

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Suture-Button versus Syndesmotic Screw in the Treatment of Distal Tibiofibular Syndesmosis Injury

A Systematic Review and Meta-Analysis for Partial Fulfilment of Master Degree in Orthopedic Surgery

Bγ Abdelrahman Fathi Ahmed Eisa

M.B.B.Ch., Faculty of Medicine- Minia University

Under Supervision of

Prof. Dr. Mohamed Mokhtar Abdellah

Assistant Professor of Orthopedic Surgery Faculty of Medicine- Ain Sham University

Dr. Islam Koriem Fattouh

Lecturer of Orthopedic Surgery
Faculty of Medicine- Ain Sham University

Faculty of Medicine
Ain Sham University
2021

Foremost, I feel always indebted to **Allah** to whom I relate any success in First and achieving any work in my life.

I would like to express my deepest appreciation to **Prof. Dr. Mohamed Mokhtar Abdellah,** Assistant Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University. No words can express my hearty thanks to his sincere advice and his valuable experienced support, encouragement, and guidance to accomplish this study.

I would like also to express my gratitude to **Dr. Islam**Koriem Fattouh, Lecturer of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his assistance, continuous directions and support throughout the whole work.

Finally my truthful affection and love to My Family, who were and will always be, by my side all my life.

🖎 Abdelrahman Fathi

Table of Contents

List of Abbreviations	I
List of Figures	11
Introduction	1
Aim of the Work	3
Review of Literature	
- Chapter 1: Incidence and Epidemiology of Synde Injuries	
- Chapter 2: Anatomy of the Ankle Joint	6
- Chapter 3: Biomechanics of the Ankle Joint	16
- Chapter 4: Diagnosis of Syndesmotic Injuries	25
- Chapter 5: Treatment	36
Materials and Methods	41
Results	46
Discussion	60
Conclusion	67
Summary	68
References	71
Arabic Summary	

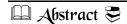
List of Abbreviations

Abb.	Full Term
AITFL	Anterior inferior tibiofibular ligament
AOFAS	American Orthopedic Foot And Association
AP	Antero-posterior
ATFL	Anterior talofibular ligament
CFL	Calcaneofibular ligament
СТ	Computed tomography
DTFS	Distal tibiofibular syndesmosis
IOL	Interosseous ligament
IOM	Interosseous membrane
ITFL	Interosseous tibiofibular ligament
MCS	Medial clear space
MRI	Magnetic resonance imaging
OMAS	Olerud-Molander Ankle Score
PITFL	Posterior inferior tibiofibular ligament
PRISMA	Preferred Reporting Items for Systematic
	Review and Meta-Analysis
PTFL	Posterior talofibular ligament
PTTL	Posterior tibiotalar ligament
ROM	Range of motion
TFCS	Tibiofibular clear space
TFO	Tibiofibular overlap

List of Figures

Figure no	Title	Page no
Figure 1	Ankle joint	7
Figure 2	Anatomy of the lateral ankle ligamentous complex and related structures	8
Figure 3	Medial ankle view showing the ligamentous anatomy of the deltoid ligament and related structures	9
Figure 4	Anterolateral view of AITFL	11
Figure 5	Posterior view of ankle showing PITFL	13
Figure 6	Open-book view of interosseous tibiofibular ligament	14
Figure 7	Diagram illustrating relative motions of the ankle joint complex	18
Figure 8	Mechanism of injury in a high ankle sprain caused by injury to the tibiofibular syndesmosis ligaments. This mechanism involves dorsiflexion and inversion of the ankle with internal rotation of the tibia	21
Figure 9	Mechanisms of injury to the syndesmosis	24
Figure 10	Cotton test medial and lateral forces are applied to the talus with the ankle in the neutral position the test is positive when increased mediolateral movement is felt compared with the opposite ankle	25

🕮 List of Figures 🕏


Figure no	Title	Page no
Figure 11	The dorsiflexion maneuver. The examiner stabilizes the leg with 1 hand and passively moves the foot toward dorsiflexion with the other hand to impose possible widening of the mortise. A positive test result is a report of pain that is localized to the distal tibiofibular syndesmosis	26
Figure 12	The external rotation stress test. The examiner stabilizes the leg with 1 hand and applies an external rotation load to the foot, with the ankle in neutral dorsiflexion/plantar flexion	27
Figure 13	The squeeze test imposed on the distal leg. The examiner cups both hands around the distal tibia and fibula and imposes compression in a progressively more forceful manner. The test is repeated at progressively more proximal locations. Pain experienced at the distal tibiofibular syndesmosis is a positive test result	28
Figure 14	Plain x ray of ankle antero posterior and mortise views	29
Figure 15	x ray of ankle showing tibiofibular overlap, tibiofibular clear space and medial clear space	30
Figure 16	Talocrural angle	31

III List of Figures 🕏

Figure no	Title	Page no
Figure 17	Axial CT scan of a 34-year-old man showing aright syndesmotic diastasis. Anterior measurements between the open arrows were 3.3 mm on the affected side and 1.6 mm on the normal side. Posterior measurements between the arrows were 5 mm on the affected side and 2.5 mm on the normal side	32
Figure 18	CT showing a Wagstaffe type II fracture b Wagstaffe type III fracture	34
Figure 19	CT view of anterior and posterior avulsion fractures of the tibia as a result of syndesmosis sprain	35
Figure 20	Syndesmosis evaluated through an arthroscopic procedure. The probe is used to assess the syndesmotic complex	37
Figure 21	Open reduction and internal fixation of an ankle with the endobutton and suture placed through the plate	38
Figure 22	Lateral view of the same ankle	39
Figure 23	Traditional internal screw fixation for the syndesmotic complex. The screws are placed just distal to the plate	40
Figure 24	AOFAS scale	44
Figure 25	Olerud-Molander Ankle Score	45
Figure 26	PRISMA flow chart	51

III List of Figures 🕏

Figure no	Title	Page no
Figure 27	Risk of bias graph presented as percentages across all included	52
Figure 28	Risk of bias summary revealing the review of the authors' decisions about each risk of bias item. Plus sign represents risk of bias present, minus sign indicates risk of bias absent and question mark equals risk of bias uncertain	53
Figure 29	Forest plot of comparison: 1 Comparison between SB group and SS group, outcome: 1.1 AOFAS score at 1 year	55
Figure 30	Forest plot of comparison: 1 Comparison between SB group and SS group, outcome: 1.2 OMAS score at 1 year	55
Figure 31	Forest plot of comparison: 1 Comparison between SB group and SS group, outcome: 1.3 Implant failure	56
Figure 32	Forest plot of comparison: 1 Comparison between SB group and SS group, outcome: 1.4 Malreduction	57
Figure 33	Forest plot of comparison: 1 Comparison between SB group and SS group, outcome: 1.5 Reoperation not including routine screw removal	58
Figure 34	Forest plot of comparison: 1 Comparison between SB group and SS group, outcome: 1.6 Wound infection	59

Suture-Button versus Syndesmotic Screw in the Treatment of Distal Tibiofibular Syndesmosis Injury: A Systematic Review of Literature and Meta-Analysis

Abstract

Background: Ankle fractures are one of the most common types of fractures, comprising 18% of all skeletal injuries annually. These fractures frequently involve the distal tibiofibular syndesmosis. The syndesmosis is vital in stabilizing the ankle mortise and transmitting load during weight bearing. In this study we reviewed the literature for comparison between suture button and syndesmotic screw fixation.

Aim of the work: A Systematic review to compare between suture button and syndesmotic screw fixation in distal tibiofibular syndesmotic injuries.

Methods: This systematic review consisted of 5 RCTs, including a systematic search of literature (PubMed/medline, National Library of Medicine, and The Cochrane Library), selection of studies, extraction of study characteristics, assessment of methodological quality and bias and extraction of data on clinical outcomes and their comparisons between different surgical groups using revman 5.2.

Results: A total of 5 RCTs were included, 347 patients were extracted from the included studies. Of the 347 patients, 170 (48.991%) had undergone suture button fixation and 177 (51.008%) had undergone syndesmotic screw fixation. The minimum follow-up duration was 12 months. These procedures were done using standard AO technique. suture button group had significantly higher AOFAS score with less implant failure (before 8 weeks), malreduction rates and reoperation (not including routine screw removal), with higher rate of wound infection.

Conclusion: We concluded that the suture-button device could lead to better objective range of motion measurements and earlier return to work, besides, the suture-button fixation group had lower rate of implant removal, implant failure, and malreduction. Multicenter randomized clinical trials are needed to obtain a high-quality level of evidence for the comparison between suture button and syndesmotic screw.

Keywords: Syndesmosis, ankle, suture button, tightrope and screw.

Introduction

Ankle fractures are one of the most common types of fractures, comprising 18% of all skeletal injuries annually. These fractures more frequently involve the distal tibiofibular syndesmosis. The syndesmosis is very important in stabilizing the ankle mortise and load transmission during weight bearing. (1-2)

Anatomic reduction and stabilization of the distal tibiofibular syndesmosis is vital for optimal functional outcome. (3-4)

Inadequate reduction of syndesmosis can lead to arthrosis and instability that is equal to poor subjective and objective outcomes. (1-3,5)

Methods of treatment include syndesmotic screw and suture button fixation. Optimal surgical management is a subject of debate in the literature. (3,6)

Understanding the distal tibiofibular syndesmotic biomechanics is vital in formulating treatment algorithms. There is a normal physiologic movement between the tibia and fibula at the distal tibiofibular joint during plantar flexion and dorsiflexion of the ankle, which appears to be more or less 1-2 mm of widening at the ankle mortise. (2,7-8)

Introduction

However screw fixation is the gold-standard in treatment of syndesmotic injury, some important issues should be considered, such as screw loosening, breakage, discomfort, reoperation, loss of reduction due to early implant removal. (9-10)

More recently, the suture-button fixation device has awakened the attention of many orthopedic surgeons. This device has been reported with some potential advantages, such as allowing of physiological movement while withholding the required reduction, less risk of implant removal and recurrent syndesmotic diastasis, and earlier rehabilitation.^(1,11)

Aim of the Work 🕏

Aim of the Work

A Systematic review to compare between suture button and syndesmotic screw fixation in distal tibiofibular syndesmotic injuries.