

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Decellularized Periosteum of New Zealand Adult Rabbits as a Potential Biologic Scaffold for Bone Tissue Engineering: Histological and Immunohistochemical Study

Chesis

Submitted for Partial Fulfillment of M.Sc. Degree in Histology and Cell Biology

By

Manal Ashour Mohammed Hassan

Demonstrator of Histology and Cell Biology Faculty of Medicine - Ain Shams University

Under Supervision of:

Prof. Dr. Gehad Ahmed Ahmed Hamouda

Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University

Prof. Dr. Abeer Abd El-Mohsen Abd El-Samad

Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University

Dr. Hadwa Ali Abd Al-Khalek Ali

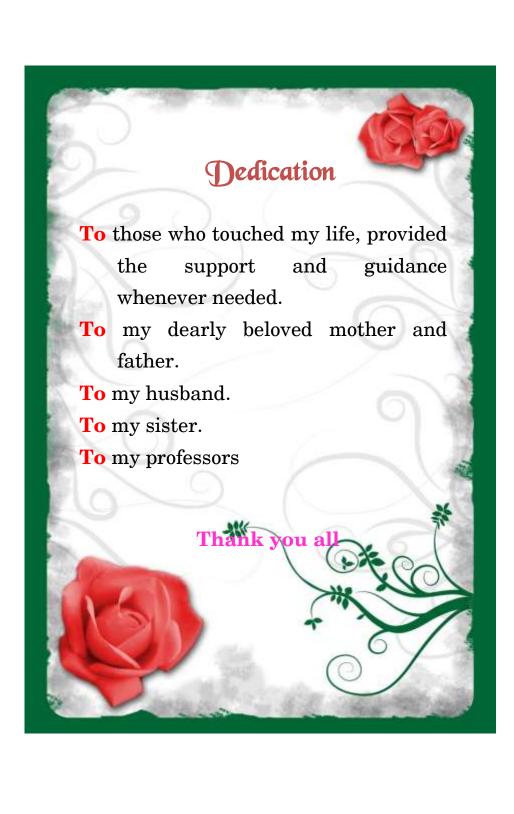
Assistant Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University.

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

First of all I would like to thank **God** who allowed and helped me to accomplish this work and only by his will everything can be achieved.

I would like to express my respectful thanks and profound gratitude to **Prof. Dr, Gehad Ahmed Ahmed Hammouda,** Professor of Histology and Cell Biology Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made the completion of this work possible.


I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Abeer Abd El-Mohsen Abd El-Samad,** Professor of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. Hadwa Ali Abd Al- Khalek Ali,** Assistant Professor of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, for her encouragement, kindness, supervision and cooperation in this work.

I would like to express my thanks to my friends and colleagues at the Histology and Cell Biology department, Faculty of Medicine- Ain Shams University for their support till this work was completed.

Manal Ashour

Tist of Contents

Subject	Page No.
List of Abbreviations	1
List of Tables	IV
List of Figures	V
List of Histograms	VI
Abstract	VII
Introduction	1
Aim of the Work	3
Review of Literature	4
Materials and Methods	33
Results	53
Discussion	146
Conclusion and Recommendation	157
Summary	159
References	163
Arabic Summary	

List of Abbreviations

Abb.	Full term
3-D	Three-dimensional
ADM	Adriamycin
AETI	Alveolar epithelial type I
AETII	Alveolar epithelial type II
bFGF	Basic fibroblast growth factor
BM-MSCs	Bone marrow-derived mesenchymal stem cells
ВМР	Bone morphogenetic protein
CD	Cluster of differentiation
chitosan-DP	Decellularized periosteum with chitosan
globules	globules
CM	Conditioned medium
COX-2	Cyclooxygenase type II
DAB	Diaminobenzidine
DAPI	4, 6-Diamidino-2-phenylindole
dECM	Decellularized ECM
DMEM F12	Dulbecco's Modified Eagles Medium F12
D-periosteum	Decellularized periosteum
ECM	The extracellular matrix
EDTA	Ethylene Diamine Tetra Acetic Acid
FasL	Fas ligand
FBS	Foetal bovine serum
Fzd	Frizzled
GAG	Glycosaminoglycans

List of Abbreviations

Abb.	Full term
GDF-5	Growth differentiation factor
GFs	Growth factors
hESCs	Human embryonic stem cells
HPDCs	Human periosteum derived cells
IL	Interleukin
IL- 10	Interleukin-10
iMSCs	iPSC-derived mesenchymal stem
iPSCs	Induced Pluripotent stem cells
JPCs	Jaw periosteal cells
mES	Murine embryonic stem cells
mPDCs	Murine PDCs
MSCs	Mesenchymal stem cells
N-Periosteum	Native periosteum
PBS	Phosphate Buffer Saline
PC-Exos	Exosomes derived from periosteum derived cells
PCs	Periosteum derived cells
PDCs	Periosteum derived cells
PDGF	Platelet-derived growth factor
PDPCs	Periosteum derived progenitor cells
PGL	Polyglycolide-co-polylactide
Prx-1	Paired-related homeobox gene-1
РТН	Parathyroid hormone
PTHR1	Parathyroid hormone type I receptor
PTHrP	Parathyroid hormone-related protein

List of Abbreviations

Abb.	Full term
RPM	Round per minute
RUNX2	Runt-related transcription factor 2
sdf-1	Stromal cell-derived factor-1
SDS	SODIUM dodecyl sulfate
SIS	Small intestinal submucosa
SMA9	Smooth muscle actin 9-expressing cells
Sox9	Sry-related high-mobility group box 9
TBS	Tris-buffered saline
ТЕР	Tissue-engineered periosteum
TGF	Transforming growth factor
TGFBR2	Transforming growth factor Beta receptor 2
TGFBR1	Transforming growth factor-beta type I receptor
TGF-β	Transforming growth factor β
TNF-α	Tumor necrosis factor-alpha
VEGF	Vascular endothelial growth factor
αSMA	Alpha smooth muscle actin
β-ТСР	β-tricalcium phosphate

List of Tables

Table	Title	Page
I	The mean area percentage of glycosaminoglycans (Safranin O)	138
II	The mean area percentage of osteoid tissue at different durations in group IV (H&E)	140
Ш	The mean area percentage of osteoid tissue at different durations in group IV (Toluidine blue)	142
IV	The mean area number of PDCs at different durations in group IV (H&E)	144

List of Figures

Table	Title	Page
I	Diagram showing the three different zones of periosteum	6
II	An illustration of the development of a long bone	10
III	The application of the decellularized scaffolds in the field of regenerative medicine	28
IV	Class II laminar flow cabinet	35

List of Histograms

Histogram	Title	
I	The mean area percentage of glycosaminoglycans (Safranin O)	139
II	The mean area percentage of osteoid tissue at different durations in group IV (H&E)	141
III	The mean area percentage of osteoid tissue at different durations in group IV (Toluidine blue)	143
IV	The mean area number of PDCs at different durations in group IV (H&E)	145

Abstract

Background and aim of the study:

Bone grafting is typically used to bridge a bone defect. Bone graft healing and remodeling is always a main interest of orthopedic surgeons. Because the periosteum has a significant regenerative capacity and is widely known to be essential for the initiation of bone graft healing and remodeling, this study was conducted to produce a rabbit decellularized periosteum to be used as a biologic scaffold for future bone tissue engineering. Periosteum-derived progenitor cells (PDPCs) could adhere, proliferate and infiltrate into the D-periosteum when combined together in *vitro*.

Methods: Twenty-five adult male New Zealand rabbits were divided into 4 groups. Group I (the native periosteum), Group II (the decellularized periosteum), Group III (PDPCs isolation, culture, and characterization), Group IV (the recellularization of the D-periosteum by PDPCs). Native and decellularized periosteum were prepared for histological and immunohistochemical techniques. Samples of recellularized periosteum were taken at days 3, 7, 10 after cell seeding and sections were stained with H&E and toluidine.

Results: Light microscopic examination revealed absence of cell nuclei in the D-periosteum as compared with the N-periosteum and this was demonstrated by using H & E staining, DAPI staining and agarose gel electrophoresis. The distribution of collagen fibers in periosteal layers were preserved after decellularization. However, the glycosaminoglycans in periosteal layers decreased. Light microscopic examination after recellularization revealed that PDPCs could adhere, proliferate and infiltrate into the D-periosteum in *vitro*. Moreover, osteoid tissue was observed, and this was demonstrated by toluidine blue staining.

Conclusion: The D-periosteum maintains biocompatibility in *vitro*, therefore, can provide a naturally compatible scaffold for bone tissue engineering in future.

Keywords: Decellularization, Periosteum, Extracellular matrix, Bone tissue engineering, Periosteum-derived progenitor cells (PDPCs).