

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

HOTAIR Expression and Prognostic Impact in Acute Myeloid Leukemia Patients

Thesis

Submitted for Partial Fulfillment of M.D degree in Clinical and Chemical Pathology

By

Rawda Ahmed Alaa El-Din

M.B.,B.Ch and M. Sc Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Supervised by

Prof. Amany Ahmed Osman

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Prof. Amal Mostafa Mohammed El-Afify

Professor of Internal Medicine and Hematology Faculty of Medicine - Ain Shams University

Dr. Mona Fathey Abdel Fattah Hassan

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Yasmin Nabil El-Sakhawy

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Shereen Abdel Monem Ibrahim

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020-2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

All praise to Allah and all thanks, he guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

I would like to express my deep appreciation and gratitude to **Prof. Amany Ahmed Osman**, for her enormous effort, excellent guidance, supervision, advice and help during the entire course of this research.

I am deeply grateful to **Prof. Amal Mostafa Mohammed El-Afify,** for her valuable help and supervision.

I wish to express my sincere thanks and gratitude to Assisstant Prof. Mona Fathey Abdel Fattah Hassan, Assisstant Prof. Yasmin Nabil El-Sakhawy and Dr. Shereen Abdel Monem Ibrahim, for their continuous help, valuable remarks, advice and supervision with continuous guidance through out this research.

I am also grateful to **Prof. Iman Omar**, for her excellent guidance.

Dedicated to my family; my Parents, my husband and my colleagues. Thank you all for your continous help, cooperation, powerful support, encouragement and understanding.

Rawda Ahmed Alaa El-Din

Abstract

Background: Acute myeloid leukemia (AML) is a disorder characterized by a rapid onset of symptoms attributable to bone marrow failure due to clonal proliferation of primitive hematopoietic stem cells or progenitor cells. Epigenetic abnormalities play an important role in the development and progression of acute leukemia. Long non-coding ribonucleic acid (lncRNA) plays an important role in epigenetic regulation. Homeobox (Hox) transcript antisense intergenic RNA (HOTAIR) is a lncRNA which has been determined to be a negative prognostic indicator in various solid-tumor patients. However; its role in hematopoietic tumors as AML is to be assessed. This study aimed at measuring lncRNA HOTAIR in newly diagnosed AML patients and correlating its expression with different clinicopathological prognostic variables. This provides a new prospective for novel marker involved in development and progression of AML which can be used as diagnostic marker and target of therapy. The current study included 65 subjects divided into 35 newly diagnosed AML adult patients (before initiation of therapy) and 30 non-leukemic adult patients as controls. HOTAIR expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR).

Results: HOTAIR expression was found to be significantly upregulated in AML patients (p = 0.000) and showed to have a diagnostic ability of AML as confirmed by significant difference between cases and controls using receiver operating characteristic curve (ROC) analysis. However; it was not significantly correlated with event free survival (EFS) or clinicopathological prognostic variables.

Conclusion: This study showed that the expression of HOTAIR is upregulated in de novo AML patients and can be used as a diagnostic marker. However; highly expressed HOTAIR is not associated with poor prognosis.

List of Contents

Title	Page No.
List of Tables	ii
List of Figures	
Tist of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
Acute Myeloid leukemia	4
Epigenetics	19
HOTAIR	
Subjects and Methods	36
Results	
Discussion	64
Summary	73
Recommendations	75
References	76
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	WHO, 2016 classification of myeloid neoplas.	ms 11
Table (2):	Expression of cell-surface and cytoplasmic r for the diagnosis of AML	
Table (3):	Risk categories according to genetic abnormal	lities 16
Table (4):	Demographic, clinical and some laboratory AML patients and control groups	
Table (5):	Cytogenetic data of AML patients	57
Table (6):	Response, relapse and EFS in AML paients	57
Table (7):	HOTAIR expression in both AML patient control groups	
Table (8):	Relation of HOTAIR expression and classification	
Table (9):	Relation of HOTAIR with the clinical parame	ters58
Table (10):	Correlation of HOTAIR with age, laborator and EFS (months) of the studied patients	
Table (11):		ssion in
Table (12):	Relationship of HOTAIR expression and EFS	59
Table (13):	Analysis of different prognostic variables of for patient group	
Table (14):	Relation of HOTAIR expression to st prognostic factors in AML	

List of Figures

Fig. No.	Title P	age No.
Figure (1): Figure (2):	Methylation as an epigenetic mechanism HOTAIR gene is located on chromosome 12 in	
g (_),	the HoxC locus, specifically between HoxC11 HoxC12.	and
Figure (3):	The RNAs recruiting PRC2 complex in PRC2 function.	
Figure (4):	RNA extraction using QIAamp RNA Blood I Kit (Qiagen)	
Figure (5):	Demonstration of difference of HOT expression level between AML patients control groups	and
Figure (6):	Significant correlation between HOT expression and increased TLC in AML patien	
Figure (7):	Receiver operating characteristic curve (ROC HOTAIR to differentiate between AML pat and controls	ients
Figure (8):	Percent of responders and non-responders an AML patients	-
Figure (9):	Percent of relapsed and nonrelapsed pat among AML patients	
Figure (10):	Cummulative survival of AML patient g during study period	

List of Abbreviations

Abb.	Full term
AL	Acute leukemia
	Acute myeloid leukemia
	additional sex combs like 1
	Area under the curve
	Bone marrow
	Cancer susceptibility 15
	Complete bood picture
	Core binding factor
	cytidine-cytidine-adenosine-adenosine- thymidine
<i>CD</i>	Cluster of differentiation
cDNA	Complementary deoxyribonucleic acid
CEBPA	CCAAT/enhancer-binding protein alpha
	Chronic myelogenous leukemia
CpG	Cytosine next to guanine
\overline{CT}	Computed tomography
Ct	Cycle threshold
<i>DIC</i>	Disseminated intravascular coagulation
<i>DLBCL</i>	Diffuse large B cell lymphoma
DNA	Deoxyribonucleic acid
<i>DNMT3A</i>	DNA methyltransferase 3A
<i>EFS</i>	Event free survival
<i>ELN</i>	European Leukemia Net
ETV6	Translocation-Ets- leukemia virus variant gene 6 protein
<i>EZH</i> 2	enhancer of zeste homolog 2
<i>FAB</i>	French-American-British
FISH	fluorescence in situ hybridization
FLT3-ITD	Fetal liver tyrosine kinase- internal tandem
	duplication

List of Abbreviations (Cont...)

Abb.	Full term
g	Cram
g/dL	
_	Trans-acting T cell specific transcription factor
H1	- , - , - , - , - , - , - , - , - , - ,
H2A	
H2B	
H3B	
H4	
HB	
	Hematopoietic cell transplantation
	Human leucocyte antigen
	Homeobox transcript antisense intergenic
	ribonucleic acid
HOX	Homeobox
	Highly significant
HSM	Hepatosplenimegaly
IDH2R172	. isocitrate dehydrogenase 2 R172
<i>Inv</i>	Inversion
<i>IPI</i>	. international prognostic index
<i>IPT</i>	Immunophenotyping
<i>IQR</i>	.Interquartile range
<i>K2-EDTA</i>	. K2-ethylene diamine tetraacetic acid
<i>KIT</i>	. Tyrosine protein kinase
<i>KMT2A</i>	lysine specific methyltransferase 2A
<i>K-RAS</i>	Kirsten rat sarcoma viral oncogene
LncRNA	Long non-coding ribonucleic acid
<i>LP</i>	Lumber puncture
LSD1	Lysine specific histone demethylase 1A
<i>MBD</i>	. Methyl-CpG binding domain

List of Abbreviations (Cont...)

Abb.	Full term
MRP	. Methyl-CpG binding proteins
	. Myelodysplastic syndrome
mL	
	.Magnetic resonance imaging
<i>MS</i>	
	.Non-coding ribonucleic acid
	.Nucleophosmin 1
<i>NS</i>	-
	.Peripheral blood
	.Positron emission tomography
pg	
<i>PLT</i>	
	. Polycomb Repressive Complex 2
PV	
	. Probability value
•	Quantitative reverse transcription polymerase
1	chain reaction
<i>r</i>	$.\ Correlation$
<i>RBCs</i>	.Red blood cells
<i>Rn</i> –	. Emission Intensity of Reporter PCR without
	template
<i>Rn</i> +	. Emission Intensity of Reporter PCR with
	template Emission Intensity of Passive Reference
<i>ROC</i>	.Receiver operating characteristic
RUNX1	$. Runt\mbox{-}related\ transcription\ factor\ 1$
S	. Significant
SFRSF2	splicing factor arginine/serine-rich 2
SOX4	$.SRY ext{-}box\ transcription\ factor\ 4$

List of Abbreviations (Cont...)

Abb.	Full term
SPSS	statistical package for social science
	Independent t-test
<i>t</i>	Translocation
<i>t-AML</i>	Therapy related AML
<i>TERT</i>	Telomerase reverse transcriptase
	ten-eleven translocation-2
<i>Th2</i>	T-helper 2
<i>TLC</i>	Total leucocytic count
TP53	Tumor protein p53
TRDMT1	Transfer RNA cytosine 5 methyltransferase 1
<i>uL</i>	Microliter
<i>WBCs</i>	White blood cells
WHO	World Health Organization
X^2	Chi-square test

Introduction

cute myeloid leukemia (AML) is a disorder characterized by a clonal proliferation derived from primitive hematopoietic stem cells or progenitor cells. It occurs at all ages, but predominantly in older people (>60 years of age). AML typically presents with a rapid onset of symptoms attributable to bone marrow failure (O'Donnell et al., 2012).

Progress in therapeutic approaches such as chemotherapy, radiotherapy, biological regulations and hematopoietic stem cell transplantation resulted in significant advancements; however, leukemia continues to be a significant health burden. An effective molecular marker for early diagnosis, prognosis and treatment guidance, is therefore, required (**Lin et al., 2018**).

Numerous studies have shown that epigenetic abnormalities play an important role in the development and progression of acute leukemia. Non-coding ribonucleic acid (ncRNA) showed to play an important role in epigenetic regulation (Muto et al., 2015).

The sequencing technologies and genome-wide analysis have indicated that the majority of the genome is the so-called dark matter that is transcribed into noncoding ncRNA (Nagano and Fraser, 2011).