

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Mechanical and Antimicrobial Properties of Glass Ionomer Cement Incorporated with Dragon Blood Tree Extract

Thesis Submitted to the Faculty of Dentistry
Ain Shams University in Partial Fulfillment of the
Requirements for the Master Degree in Pediatric Dentistry

By

Ghassan Mohammed Saeed AlAmodi

B.D.S, Faculty of Dentistry, Aden University / Yemen (2007)

Ain Shams University Faculty of Dentistry 2021

Supervisors

Prof.Dr.Amr Mahmoud Abd El Aziz

Professor of Pediatric Dentistry and Dental Public Health
Department of Pediatric Dentistry and Dental Public Health
Faculty of Dentistry, Ain Shams University

Dr.Ola Mohamed Abd El Geleel

Lecturer of Pediatric Dentistry and Dental Public Health
Department of Pediatric Dentistry and Dental Public Health
Faculty of Dentistry, Ain Shams University

ڹؠڹٞ۫ۿٳڛۜٲٳڿڿٙٵڮۿؽ

فالواجانا المكانا المكلنا

صِّلَاقَالُكُا لِعَالِمَ أَنْ الْعَالِمُ الْعَظِيمِ أَنْ

سورة البقرة , آيه 32

Acknowledgment

All praise and all thanks to Allah, the one and only who has given me the strength, guided me and enabled me to accomplish this work.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Amr Mahmoud Abd El Aziz**, Professor of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University for his valuable scientific support, constructive comments and great effort throughout the course of this research.

I would like to offer my special thanks to **Dr.Ola Mohamed Abd El Geleel**, Lecturer of Pediatric Dentistry and Dental Public Health
Department, Faculty of Dentistry, Ain Shams University for her patient
guidance, enthusiastic encouragement and useful critiques of this
research work.

At last, I would like to thanks my friends, professors, colleagues and staff members of the Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain-Shams University for their constant help and encouragement.

Dedication

Special thanks go to my **family**. Words cannot express how grateful I am to my mother **Dr. Amal Basaleh** and to my father **Prof. Mohammed Alamoudi** who supported and helped me in every step in this work and inspired me throughout my life. Last but not least, my gratitude to my beloved sisters **Dr. Iman Alamoudi** and **Dr. Ghada Alamoudi** for all the engorgements they gave me. Finally, I sincerely appreciate the almighty God for his graces, strength and faithfulness.

List of Contents

Title	Page No.
List of tables	i
List of figures	ii
List of abbreviations	iv
Introduction	1
Review of literature	3
Aim of study	16
Material and Methods	17
Results	38
Discussion	46
Summary	55
Conclusion	57
Recommendation	58
References	59
Arabic Summary	_

List of Tables

No.	Title	Page No.
1	Materials used in this study	30
2	Bacterial inhibition zones diameter	38
3	Mean \pm standard deviation (SD) of compressive strength (Mpa) for different groups	40
4	Mean \pm standard deviation (SD) of diametral tensile strength (Mpa) for different groups	42
6	Correlation between compressive and diametral tensile strength	44

List of Figures

No.	Title	Page No.
1	Dragon blood tree and its branches	22
2	DBT Grounded Poweder	22
3	Sonication process	23
4	Filtration using whatman filter paper	23
5	Evaporation process	23
6	DBTE resin	24
7	weighing the extract	24
8	adding distilled water to dried extract	24
9	The prepared dragon blood tree extract with different concentrations	25
10	Blood Agar	26
11	S.Mutan Strain	28
12	cultured S.mutans agar plate	28
13	Mixing the GIC with DBTE solution	30
14	Teflon mold	30
15	the prepared discs in Teflon mold	30
16	formation of inhibition zones around the blood agar disc for group (I,II.III).	32
17	formation of inhibition zones around the blood agar disc for group (I,II.III).	32
18	formation of inhibition zones around the blood agar disc for group (IV,C)	33
19	formation of inhibition zones around the blood agar disc for group (IV,C)	33
20	Teflon mold used for specimen preparation for compressive strength testing	34
21	Universal testing machine(INSTRON) and load applicator used for compressive strength testing	35
22	Teflon mold used for specimen preparation for Diametral Tensile Strength	36
23	Instron testing machine and load applicator used for Diametral Tensile Strength	37
24	Bar chart showing average bacterial inhibition zones (cm) for different groups	39
25	Bar chart showing average compressive strength (Mpa) for different groups	41
26	Bar chart showing average diametral tensile strength (Mpa) for different groups	43
27	Scatter plot showing the correlation between compressive and diametral tensile strength	45

List of abbreviations

Symbol	Meaning
GIC	Glass ionomer cements
DBT	Dragon blood tree
ART	atraumatic restorative treatment
MID	minimal invasive dentistry
IPT	Indirect pulp treatment
IPC	indirect pulp capping
Na	Sodium
Al	Aluminum
Si	Silica
P	Phosphate
F	Fluoride
MgO	Magnesium Oxide
EEP	ethanolic extracts of propolis
CHX	chlorhexidine gluconate
CH	Chitosan
CHX-CT	Chlorhexidine-Cetrimide
TC	Triclosan
TiO2	Titanium oxide nanoparticles
Hap	Hydroxyapatite
CPP-ACP	Casein phosphopeptide-amorphous calcium fluoride phosphate
CESP	chicken eggshell powder
OSCC	human oral squamous cell carcinoma
PBS	phosphate buffered saline
DMEM	Dulbecco's Modified Eagle'ss medium

Introduction

Glass ionomer cements (GICs) are clinically attractive dental materials that have certain unique properties that make them useful as restorative materials. This includes adhesion to moist tooth structures, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility, and low toxicity. However, the use of GICs in mechanically loaded situation has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry¹.

Glass ionomer cements are often used in deep caries where antibacterial property is required. GICs lack this property so several attempts have been made to improve it ².

Herbal and natural products have been used in dental and medical practice for thousands of years by ancient civilizations. Thus, researchers are stimulated by their physical and chemical properties. Today, they are very popular to be used in dentistry because of their high antimicrobial activity, biocompatibility, antioxidant, anti-inflammatory properties, availability, less toxicity, and cost effectiveness³. Therefore, it would be very appropriate to study and examine their properties, safety and efficiency ⁴.

Dragon blood tree "DBT" is a species plant in the Agavaceae family. It is a tree endemic in the Island of Socotra, Yemen⁵. DBT is one of the renowned traditional medicines. It has got several therapeutic uses: hemostatic, antidiarrheic, antiulcer, antimicrobial, antiviral, wound healing, antitumor, anti-inflammatory, antioxidant, etc. Despite its wide uses, little research has been done to assess its effectiveness in clinical applications⁶.

Review of literature

In the past few decades, scientific developments in cariology, dental materials and diagnostic systems have changed dentistry's approach in diagnosis and management of dental caries. The dental restorative and adhesive materials gave us a new understanding of the caries process, remineralization and the changes in caries prevalence have catalyzed the evolution in caries management from G.V. Black's "extension for prevention" to "minimally invasive" ⁷.

Glass ionomer cements (GICs) have many clinical applications. GIC is used in; indirect pulp capping, atraumatic restorative treatment (ART), restorations in patients with high caries risk incidence, cementation of metal crowns, bands, and brackets. Moreover GIC is widely applied as sealing layer over pulpotomy, pit and fissure sealants, as well as in stepwise excavation, which is a corner stone of minimal invasive dentistry (MID) development ^{8–11}.

The treatment of deep carious lesions approaching healthy pulp has always been a challenge in dentistry. Indirect pulp treatment (IPT) or indirect pulp capping (IPC) is recommended for teeth that have deep carious lesions with residual decay approximating the pulp with no signs or symptoms of pulp degeneration^{11.} Various materials have been used as IPC such as GIC.

Conventional GIC shows good biocompatibility ¹² and low setting exotherm ¹³. It releases Sodium (Na), Aluminum (Al), Silica (Si), Phosphate (P) and Fluoride (F) under neutral conditions and Ca under