

The Role of Elastography in Fibroadenoma of the Breast and differentiating it from its Mimics

A THESIS SUBMITTED FOR PARTIAL FULFILMENT OF MASTER'S DEGREE IN RADIOLOGY

Presented by

Marina Essam Fares Massak

M.B.B.CH. - Ain Shams University

Supervised by

Prof. Dr. Sahar Mohamed El Fiky

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Asmaa Magdy Mohamed Salama

Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgement

First, I thank **God** for blessing me more than I deserve and for his uncountable gifts which are exceedingly abundantly above all what we ask or think.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Sahar Mohamed El Fiky** for her sincere encouragement, constant advice and valuable guidance throughout the performance of this work.

I owe special thanks, gratitude and appreciation to Lecturer Dr. Asmaa Magdy Mohamed Salama for her close supervision, continuous advice and support which gave me the best guidance during different stages of this work.

Finally, I cannot forget to thank my professors, my husband my family, and my colleagues, for their support and encouragement.

Contents

Acknowledgement	2
List of figures	II
List of tables	IV
List of abbreviations	V
Introduction	1
Aim of work	4
Anatomy of the breast	5
Gross Anatomy	5
Sonographic appearance of the breast	15
Pathology of fibroadenomas of the breast	18
Introduction	18
Pathologic Features	18
Clinical features and diagnosis	21
Treatment	22
Differential diagnosis and mimics of fibroadenomas	23
Radiological features of fibroadenomas	26
B-mode ultrasound	26
Radiological appearance of fibroadenomas by B-mode	
ultrasound	30
Elastography	32
Patients and methods	39
Results	45
Illustrative cases	55
Discussion	66
Summary and conclusion	72
References	73
الملخص العربي	80

List of figures

Figure 1	Position of the breast and its division				
Figure 2	Muscle attachments to the breast				
Figure 3	Gross anatomy of the breast7				
Figure 4	The terminal duct lobular units8				
Figure 5	The functional unit of the breast9				
Figure 6	Cross-section of the nipple				
Figure 7	Arterial supply of the breast11				
Figure 8	Lymphatic drainage of the breast				
Figure 9	Nerve supply of the breast15				
Figure 10	Zones of the breast16				
Figure 11	Cooper ligaments				
Figure 12	Gross appearance of fibroadenomas19				
Figure 13	Intracanalicular pattern of fibroadenoma20				
Figure 14	Pericanalicular pattern of fibroadenoma21				
Figure 15	B- mode US appearance of fibroadenomas30				
Figure 16	B- mode US appearance of phyllodes tumor31				
Figure 17	Oval shape invasive ductal carcinoma by B-mode US \dots 31				
Figure 18	Strain elastography and shear wave elastography34				
Figure 19	Strain elastography image of a pathology-proven fibroadenoma (color score 0)				
Figure 20	Strain elastography image of a pathology-proven invasive ductal carcinoma (color score 2)				

Figure 21	Pie chart demonstrating the percentage of right and left sided masses
Figure 22	Pie chart demonstrating the different size categories of the examined lesions
Figure 23	Bar chart demonstrating the BIRADS score of the study group before and after the elastography findings47
Figure 24	Pie chart demonstrating the different elastography sores of the lesions
Figure 25	Chart demonstrating ROC curve for cutoff value measurement (>1.7)
Figure 26	Bar chart demonstrating the sensitivity and specificity of Color Score>0
Figure 27	Bar chart demonstrating the sensitivity and specificity of Color Score>153
Figure 28	Bar chart demonstrating the sensitivity and specificity of Strain Ratio>1.7
Figure 29	Bar chart demonstrating the sensitivity and specificity of Color Score>0 and/or Strain Ratio>1.754
Figure 30	Bar chart demonstrating the sensitivity and specificity of Color Score>1 and/or Strain Ratio>1.754
Figure 31	(A & B) Illustrative case 155
Figure 32	(A & B) Illustrative case 256
Figure 33	(A & B) Illustrative case 358
Figure 34	(A & B) Illustrative case 460
Figure 35	(A & B) Illustrative case 562
Figure 36	(A & B) Illustrative case 664

List of tables

Table 1	Table showing the BIRADS Classification28						
Table 2	Table showing the color scoring of elastography37						
Table 3	Table demonstrating the demographic and characteristics of the studied patients45						
Table 4	Comparison between benign and malignant lesions regarding age						
Table 5	Comparison between benign and malignant lesions regarding side and size						
Table 6	Comparison between benign and malignant lesions regarding the color score						
Table 7	Comparison between benign and malignant lesions regarding the strain ratio						
Table 8	Receiver operating characteristic curve (ROC) for Strain Ratio to differentiate between benign and malignant tumors.						
Table 9	Comparison between the pathological results with the SR>1.7						
Table 10	Comparison between the pathological results with combining the color sore and/or the SR>1.751						
Table 11	Diagnostic indices of color score, SR and their combination						

List of abbreviations

AMF	Anterior mammary fascia				
BI-RADS	Breast Imaging-Reporting and Data System				
FN	False negative				
FP	False positive				
MHz	Megahertz				
MRI	Magnetic Resonance Imaging				
NPV	Negative predictive value				
PMCs	Pure mucinous carcinomas				
PPV	Positive predictive value				
ROC	Receiver operating characteristic curve				
ROI	Region of interest				
RMZ	Retromammary zone				
SCZ	Subcutaneous zone				
SE	Strain elastography				
SR	Strain ratio				
MZ	Mammary zone				
TDLU	The terminal duct lobular units				
TN	True negative				
TP	True positive				
US	Ultrasound				

Introduction

Fibroadenomas are the most common benign tumors of the breast in young females with a peak incidence during the second and third decades of life (Aoudia et al, 2018).

Clinically, fibroadenomas usually occur in younger women, ages 20 to 30 years, but may also be seen in postmenopausal age groups. They are slow-growing tumors, with a size of less than 3 cm, except for rare giant fibroadenomas (Yang et al, 2013).

Fibroadenomas develop in the lobules at the ends of mammary gland ducts and are composed of epithelium and stroma. Histopathologic features of fibroadenomas include the concurrent proliferation of stromal and glandular elements (**Goel et al, 2005**).

At sonography, fibroadenomas give imaging features being well defined, lobulated, with smooth margins and heterogeneous internal echopattern (Li et al, 2014).

Fibroadenomas are generally classified as category 3 in the BI-RADS® lexicon and are the most commonly found lesions in breast biopsies (**Fleury et al, 2009**).

Breast lesions with similar sonographic features as fibroadenomas features are subdivided into benign fibrocystic changes, lesions with low malignancy potential, and malignant lesions (Fleury et al, 2009).

Phyllodes tumor of the breast is a rare fibro-epithelial lesion that accounts for 0.3-1% of breast tumors. They can be classified as benign (most common), borderline and malignant lesions (**Abe et al, 2009**).

Ultrasonography, mammography and MRI are the diagnostic tools; however, the imaging features of fibroadenomas and phyllodes tumors show great resemblance making them hard to distinguish (Adamietz et al, 2011).

Pure mucinous carcinomas (PMCs) are rare tumors that account for 1–7% of all breast tumors. They are pathologically defined as carcinomas in which at least 90% of tumor cells are composed of extracellular mucin (**Ferré et al, 2016**).

Previous studies have found that less than 2% of lesions with the typical ultrasound features of a fibroadenoma, are found to be malignant on biopsy (**Lakshman and Vandersluis**, **2018**).

Tissue biopsy by either fine needle aspiration or core biopsy is the most accurate for the diagnosis (Houssami et al, 2001).

Elastography combined with sonography is a relatively recent method for characterizing breast lesions according to their

elastic characteristics and improves the diagnostic accuracy of the conventional B-mode ultrasonography (Adamietz et al, 2011).

Newly introduced elastography methods may contribute to characterize breast lesions by measuring the stiffness of the mass. There are two main methods of assessing stiffness (elasticity) of a mass: strain elastography and shear wave elastography. In strain elastography, the stiffness of the mass can be viewed from the degree of strain (displacement) on manual compression (Özel et al, 2018).

The combination of elastography with the ultrasonography can be used to differentiate fibroadenomas from malignant mimics and upgrade their BIRADs score. Results will be correlated with histopathology.

Aim of work

To evaluate the diagnostic performance of combined ultrasonography and strain elastography and to compare the imaging characteristics of fibroadenomas with other benign and malignant mimics and assess the results by histopathological characteristics.

Anatomy of the breast

Gross Anatomy

The breasts are modified sweat glands and function as modified apocrine glands. Mature adult breasts occupy a prominent position on the anterior chest wall between the second and sixth ribs. The average breast measures 10 to 12 cm in diameter and is 5 to 7 cm in thickness. Across the chest wall, the breast extends from the margin of the sternum to the midaxillary line. A portion of breast tissue projects into the axilla which is known as the tail of Spence (**Figure 1**) (**Stahl et al, 2016**).

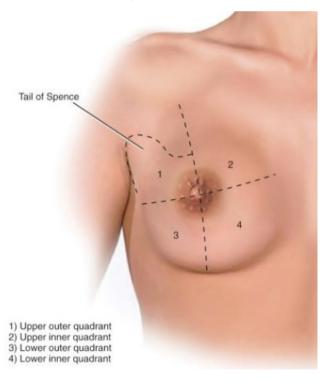


Figure 1 Position of the breast and its division (Stahl et al, 2016).

Boundaries

The borders of the breast include the clavicle superiorly, the inframammary fold inferiorly, the sternum medially, and the anterior border of the latissimus dorsi laterally. The breast is primarily attached to the pectoralis major. It also has attachments with the serratus anterior, external oblique, and the superior portion of the rectus abdominis. (**Figure 2**) (**Larson et al, 2018**).

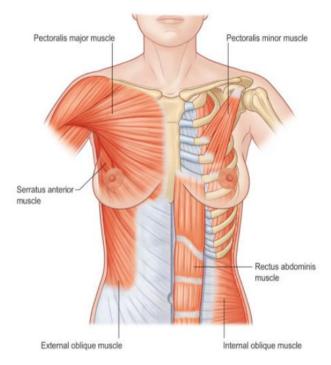


Figure 2 Muscle attachments to the breast (Larson et al, 2018).

Connective tissue

The breast lies on the chest wall on the deep pectoral fascia, with the superficial pectoral fascia enveloping the breast. Suspensory ligaments (Cooper's ligaments) connect the two layers, providing a degree of support to the breast and giving the breast its

shape. The tissues lying between the deep and superficial layers of the superficial pectoral fascia consist mainly of fat but additionally of breast parenchyma and connective tissue (stroma) (Figure 3) (James and Evans, 2020).

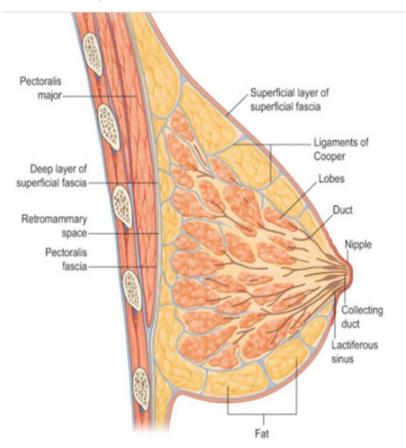


Figure 3 Gross anatomy of the breast (Larson et al, 2018).

Parenchyma

Deep to the nipple-areolar complex, the breast is divided into 15 to 25 lobes, each consisting of a branching duct system leading from the collecting ducts to the terminal duct lobular units (TDLU) (**Figure 4**). The TDLU is formed by the lobule, which is made up