

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Science Microbiology Department

Biocontrol of some Pathogenic Microorganisms Using Milk Whey, Moringa plant and Nanoparticles.

A Thesis

Submitted for the Degree of Ph.D. of Science in Microbiology

 $\mathcal{B}y$

Alshaymaa Abd el-Monaem Mohammed

B.Sc. (Microbiology), Botany Department, Faculty of Science, Zagazig University (2012)

M.Sc. In Microbiology, Microbiology Department, Faculty of Science, Zagazig University (2015)

Ain Shams University Faculty of Science Microbiology Department

Biocontrol of some Pathogenic Microorganisms Using Milk Whey, Moringa plant and Nanoparticles.

A Thesis

Submitted for the Degree of Ph.D. of Science in Microbiology

 $\mathcal{B}y$

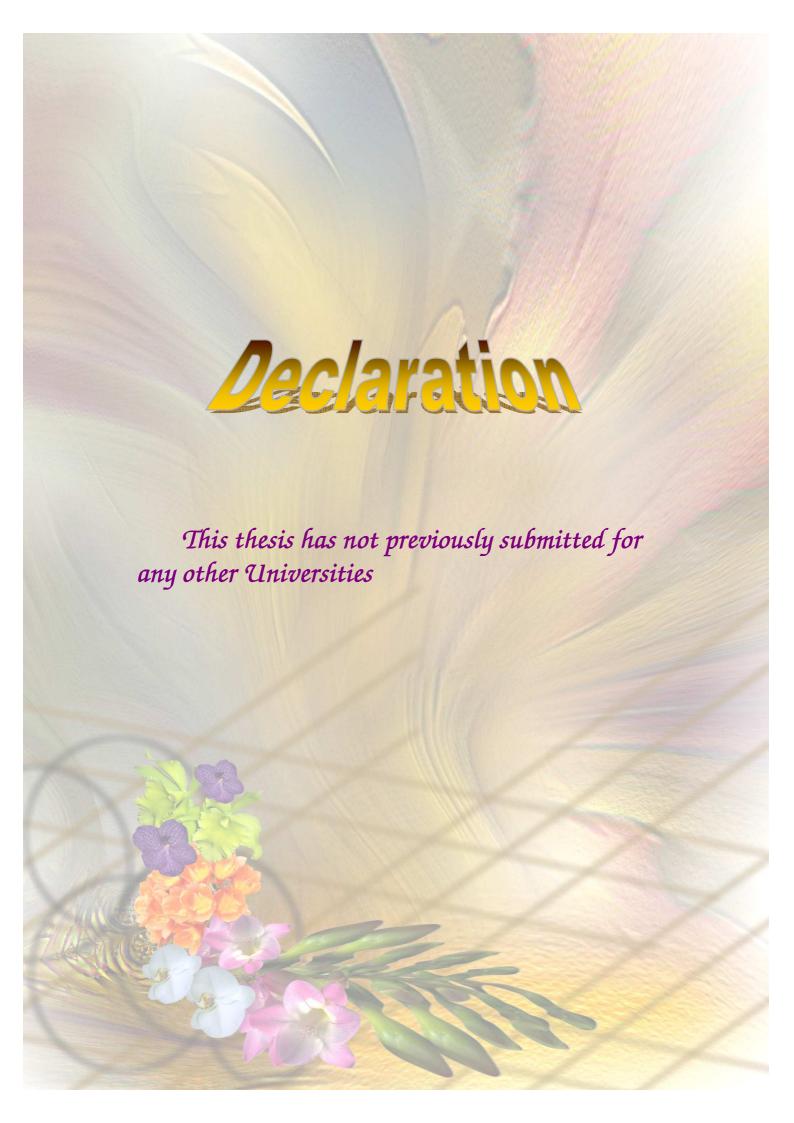
Alshaymaa Abd el-Monaem Mohammed

B.Sc. (Microbiology), Botany Department, Faculty of Science,
Zagazig University (2012)
M.Sc. In Microbiology, Microbiology Department, Faculty of Science, Zagazig University (2015)

Under Supervision of

Prof. Dr. Saadia Mohammed Hassanin Easa

Prof. of Microbiology, Microbiology Department, Faculty of Science Ain Shams University


Prof. Dr. Mohammed Farok Ibrahim

Prof. of Microbiology,
Botany & Microbiology Department,
Faculty of Science
Zagazig University

Prof. Dr. Seham Abdel-Shafi Awad-Alla

Professor of Microbiology,
Botany & Microbiology Department,
Faculty of Science
Zagazig University

Acknowledgements

Praise and thanks to ALLAH Subhanah Wata'ala for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to Prof. Dr. Saadia Hassanin Easa, Professor of Microbiology, Faculty of science, Ain Shams University for here supervision, continuous help, encouragement throughout this work and great effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I am also, I would like to express my sincere gratitude to supervisor Prof. Dr. Mohammed Farok Ghaly, Professor of Microbiology, Faculty of Science, Zagazig University for his encouragement, valuable advice and continuous assistance during the work and revising of thesis.

Also, grateful to Dr. Seham Abdel-Shafi Awad-Alla Hegazy, Associate professor of Microbiology, Faculty of Science, Zagazig University for her continuous support of study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and help me with various problems that faced in my research.

Special and sincere thanks to Dr. Ali Osman, Associate Professor of Biochemistry, Faculty of Agriculture, Zagazig University, for his encouragement and helping me in my study. His guidance helped me in all the time of research.

Abstract

In this study the antibacterial activities of aqueous ethanolic extract of *Moringa olifera* collected from El- Shabanat village at Zagazig (Egypt) was examined. The organic solvent extract was tested against some pathogenic bacteria collected from different patients in Zagazig Hospital University (ZHU). The most sensitive bacteria for *Moringa olifera* after identification by PCR and 16SrRNA was *Staphylocoous pasteuri*.

The highest degree of antibacterial activity of whey and their fractions was shown by F2 fraction against Staphylocoous pasteuri. Transmission Electron Microscopy (TEM) of Staphylocoous pasteuri treated with aqueous ethanolic extracts of leaves and seeds of Moringa and whey fractions were manifested by signs of cellular deformation, partial and complete lysis of cell components. There is a great effect of Moringa olifera than different types of antibiotics against Staphylococcus pasteuri as the indicator organism. Phenolic, flavenoids compounds and antioxidant activity were quantitatively detected in leaves and seeds; the higher ratio of phenolic and flavenoid was detected in leaves. (584.7mg/g and 95mg/g respectively) and the higher ratio of antioxidant activity was detected in leaves (101.7mg/g) after 120 min.. The ethanolic extract of leaves and seeds and also whey as raw material and their fractions were tested for their ability to formation of nanoparticles and their ability to inhibit isolated identified bacteria. Our results showed that the ability of nanoparticles of Moringa plant and whey to inhibit pathogenic bacteria decreases compared to raw plant and raw whey and their fractions.

List of Abbreviation

AgNPs	Silver Nano particles
AMPs	Antimicrobial peptides
APS	Ammonium per sulphate
AuNPs	Gold nano particles
BV	Biological value
BW	Buffalo whey
BWP	Buffalo whey protein
BWH	Buffalo whey hydrolzate
CMS	Compact mass spectrometer
CNS	Coagulase-negative staphylococcus
CNTs	Carbon nanotubes
CO2	Carbon dioxide
CPS	Coagulase-positive staphylococcus
CuNPs	Copper nano particles
DH	Degree of hydrolysis
DNase	Deoxyribonuclease
DPPH	Di Phenyl picryl hydrazen
EA	Ethyl alcohol
ESI	Electro spray ionization
F	Female
F1	Fraction 1
F2	Fraction 2
F3	Fraction 3
FT-IR	Fourier Transform Infra-Red
GMP	Glycol macro peptides
GSH	Glutathione
Н	Hexane
H. pylori	Helicobacter pylori
H_2O_2	Hydrogen peroxide
HCMV	Human Cytomegalo virus
HIV	Human immunodeficiency virus
HPV	Human papilloma virus
IL-8	Inter leukin-8
IQE	Iso quercetin equivalents
IZD	Inhibition zones diameter
KBr	Potassium bromide
L	Lane marker
LDL	Low-density lipoprotein
LF	Lactoferrin

List of Abbreviation

M	Male
M .pygmaea	Moringa pygmaea
M. arborea	Moringa arborea
M. borziana	Moringa borziana
M. corcanensis	Moringa corcanensis
M. drouhardii	Moringa drouhardii
M. hildebrandtii	Moringa hildebrandtii
M. longituba	Moringa longituba
M. oleifera	Moringa oleifera
M. ovalifolia	Moringa ovalifolia
M. peregrine	Moringa peregrine
M. rivae	Moringa rivae
M. ruspoliana	Moringa ruspoliana
M. stenopetala	Moringa stenopetala
MIC	Minumum inhibitory concentration
MW	Molecular weight
MWCNTs	Multi-walled carbon nanotubes
Neg	Negative control
PC	Paper chromatography
PCR	Polymerase chain reaction
Pos	Positive control
S	Sample
SA	Serum albumin
SAgs	Super antigens
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel
	electrophoresis
SEC-F1	Size exclusion chromatography Fraction No. 1
SEC-F2	Size exclusion chromatography Fraction No. 2
SEC-F3	Size exclusion chromatography Fraction No.3
SEM	Scanning electron microscopy
SiNPs	Silicon nanoparticles
Staph. pasteuri	Staphylococcus pasteuri
SWCNTs	Single walled carbon nanotubes
TCA	Trichloro acetic acid
TEM	Transmission electron microscope
TEMED	Tetra Methyl Ethylen Diamin
TiO_2	Titanium dioxide
TiO ₂ NPs	Titanium dioxide nanoparticles
TSST-1	Toxic shock syndrome toxin
Urea-PAGE	Urea polyacrylamide gel electrophoresis
UTI	Urinary tract infection

List of Abbreviation

UV	Ultra violet
W	Water
WHO	World health organization
WP	Whey protein
ZHU	Zagazig hospital university
ZnO	Zinc oxide
ZnONPs	Zinc oxide nanoparticles
α-la	α-lactabumin
β-lg	β-lactoglobulin

List of Contents

Subject	Page
Abstract	I
List of abbreviations	II
List of contents	V
List of tables	VIII
List of figures	IX
Aim of the study.	XII
I- Introduction	1
II- Review of Literature	4
III- Materials and Methods	42
1. Collection of pathogenic bacteria	42
2. Media used for cultivation of tested bacteria	42
3. Biochemical tests	43
4. Molecular identification of selected isolate by using PCR	45
5.Methods of identification of tested microorganism by	47
using PCR	4/
6- Whey protein	50
6.1. Preparation of whey protein	50
6.2. Degree of hydrolysis	51
6.3. Production of milk protein hydrolysates and fractions	51
6.4. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)	52
7.4. Urea polyacrylamide gel electrophoresis (Urea-PAGE)	
8.4. Fourier Transform Infrared (FTIR) Spectroscopy	58
9.4. Antibacterial activity evaluation of buffalo whey protein and fractions	59
10.4. Determination of MIC values of whey protein	59
7. Plant Source	60
7.1. Preparation of moringa plant extract	60
7.2. Antibacterial activity evaluation of Moringa leaves and	
seeds ethanolic extract	60
7.3. Determination of MIC values of <i>M. oleifera</i> ethanolic	61
extract	
7.4. Quantitative inhibition of aqueous ethanolic <i>Moringa oleifera</i> extract	
7.5. Antibacterial compounds isolation and purification	
7.5.1. Chromatography	61
7.5.2. Fourier transform infrared (FTIR) spectroscopy	62

List of contents

7.5.3. UV spectroscopy (selection of λ_{max})	62	
7.5.4. Mass analysis		
7.5.5. Determination of total phenolic compounds content		
7.5.6 .Determination of total flavonoid compounds content		
7.5.7. Antioxidant activity	65	
8- Synthesis of nanoparticles from Whey and <i>M. oleifera</i>	66	
8.1. Purification and concentration of AgNPs	66	
8.2. Antibacterial activity of nanoparticles from Whey and	67	
M. oleifera	67	
8.3. Scanning electron microscopy (SEM) for Nanoparticles	67	
9. Transmission electron microscopy (TEM)	67	
10.Chemicals and Reagents	69	
11. Statistical analysis	69	
IV- RESULTS	70	
1. Isolation of pathogenic bacteria from patients	70	
2. Screening of Moringa extracts and whey protein against		
bacterial isolates	75	
3. Biochemical tests for selective bacteria	78	
4. Molecular identification of the selected bacterium	79	
5. Degree of hydrolysis of whey	82	
6. Molecular masses of whey protein as obtained by SDS-	0.2	
PAGE	83	
7. Molecular masses of whey protein as obtained by Urea	96	
Polyacrylamide gel electrophoresis (Urea-PAGE)	86	
8. Fourier Transform Infrared (FT-IR) Spectroscopy	87	
9. Antibacterial activity evaluation of buffalo whey protein		
and their fractions	90	
10. Minimum Inhibitory Concentration (MIC) of buffalo	0.1	
whey protein	91	
11. Evaluation of the antibacterial activities of the mixture of	0.2	
F2 whey protein and antibiotics	93	
12. Transmission Electron Microscope (TEM) Image	07	
Analysis of F2	97	
13. UV–vis spectroscopy		
14. Scanning Electron Microscope analysis (SEM) for	100	
nanoparticles from F2	100	
15. Inhibition of bacterial growth by nanoparticles from F2	101	
whey protein		
16. Antibacterial activity evaluation of moringa leaves and		
seeds		
17. Minimum Inhibitory Concentration (MIC) of moringa	103	

List of contents

leaves and seeds	
18. Quantitative inhibition of <i>Staphylococcus pasteuri</i> by	
aqueous ethanolic extract of leaves and seeds	105
19. Effect of antibiotic combination with moringa extracts	106
20. Detection and purification of antibacterial compounds by chromatography	
21A. Fourier transforms infrared (FT-IR) spectroscopy of purified compounds from moringa leaves and seeds by paper chromatography	
21 B. UV spectroscopy (selection of λ_{max})	118
21 C. GC-Mass analysis	121
22. Transmission electron microscope (TEM) analysis of Staph. pasteuri treated with moringa leaves and seeds	130
23.Estimation of total Phenolic and flavenoids compounds in moringa extract	
24. Estimation of antioxidant activity of moringa leaves and seeds ethanolic extract	136
25. UV–vis spectroscopy for nanoparticles from <i>M. olifera</i>	138
26.Scanning electron microscope analysis (SEM) for nanoparticles from moringa leaves	139
27. Inhibition of Staph.pasteuri growth by nanoparticles from moringa leaves nanoparticles	140
V- Discussion	141
VI- English Summary	155
VII- Conclusion	159
VIII- Recommendations	
IX- References	
الملخص العربي	