

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Effect of Preparation Design and Ceramic Material on the Fracture Resistance of Onlay Restorations

Thesis submitted for the partial fulfillment of the Master's Degree of Science requirements in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By Malak Khaled Al-Qatta

(B.D.S) Sanaa University-Yemen (2015)

Faculty of Dentistry

Ain Shams University

2021

Supervisors

Dr. Marwa Mohamed Wahsh

Professor of Fixed prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Huda Mohamed Abdel Sadek

Lecturer of Fixed prosthodontics
Faculty of Dentistry
Ain Shams University

Acknowledgment

All praise and all thanks to Allah, the one and the only who has given me the strength, guided me and enabled me to accomplish this work.

I would like to express my deepest gratitude to my supervisors **Dr.Marwa Mohamed Wahsh** Professor at fixed prosthodontics department Faculty of Dentistry Ain Shams University and **Dr.Huda Mohamed Abdel Sadek** Lecturer at fixed prosthodontics department Faculty of Dentistry, Ain Shams University for their dedicated support, marvelous guidance and encouragement during the running of this thesis.

I would like to thank **Dr. Mahmoud Attya** and **Dr. Rusul Swidan** for their support and persistent help.

Also, I would like to thank my professors, colleagues and staff members of the Fixed prosthodontics Department, Faculty of Dentistry, Ain Shams University for their constant help and encouragement.

Finally, I would like to thank my aunt **Dr. Sarah Lutf Sennain** and my friend **Dr. Noha Al-Amri** who helped me to finish this work.

Dedication

This work is dedicated:

To My Grandmother and **Mother**, for all their love, prayers, and sacrifices for educating and preparing me for my future.

To the Soul of My Grandfather, whose affection and support encouraged me throughout life. May Allah have mercy on him.

To My Father, family and friends.......

List of Contents

Title	Page No.
List of Tables	ii
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Review of literature	3
Statement of problem	30
Aim of Study	31
Material and Methods	32
Results	64
Discussion	75
Summary	83
Conclusion	84
Clinical recommendation	85
References	86
Arabic Summary	-

List of Tables

No.	Title	Page		
		No.		
1	Materials manufactures, description, chemical	32		
	composition and properties			
2	Materials manufactures, description, and chemical			
	composition			
3	The interaction between experimental variables	42		
4	Firing parameters crystallization	54		
5	Failure mode assessment	63		
6	Descriptive statistics for fracture resistance (N) of	65		
	different groups			
7	Effect of different variables and their interactions on 6			
	fracture resistance (N)			
8	Mean ± standard deviation (SD) of fracture 6			
	resistance (N) for the two materials			
9	Mean ± standard deviation (SD) of fracture	68		
	resistance (N) for the two preparation designs			
10	Mean ± standard deviation (SD) of fracture resistance	70		
	(N) for the two materials and the two preparation			
	designs			
11	Post hoc pairwise comparisons between the	71		
	independent variables, ceramic material and preparation design.			
12	Failure modes after fracture resistance test	72		

List of Figures

No.	Title	Page
		No.
1	Vita Enamic® block	34
2	Vita Suprinity® block	34
3	porcelain etchant	35
4	porcelain primer	
5	resin cement, Aureocem NE	
6	enamel etchant	
7	extracted maxillary first premolar	37
8	the digital caliper	38
9	dipping into molten wax	40
10	custom-made rubber mold	40
11	standardized silicone layer simulating the	41
	periodontal ligament	
12	inlay diamond set	44
13	dental milling machine	44
14	bucoo-lingual view showing occlusal cavity depth	45
15	mesio- distal view of anatomical and butt joint cusp	45
	reduction	
16	occlusal view showing anatomical and butt joint	46
	cusp reduction	
17	7 checking the reduction depth	
18	finishing of the axial walls and pulpal floor 4	
19	E2 Lab scanner, 3 shape	48
20	pre-check the preparation	49
21	finish line detection	49
22	cement space values	50

23	cavity depth and palatal cusp reduction were set	50
24	the final view of butt joint and anatomical	51
	preparation designs before milling.	
25	CAD/CAM unit (CORiTECH 250i, Imes-icore)	52
26	Vita Enamic polishing Set	53
27	Vita firing paste	54
28	The restorations on the firing tray	55
29	Furnace (Program P310 Ivoclar Vivadent)	55
30	selective etching of enamel	57
31	etching the inner surface of onlay restoration	57
32	silane application.	58
33	dispensing the self-adhesive resin cement into the	59
	cavity by the auto mixed dispenser	
34	cemented samples fixed to the loading device	59
35	Robota thermocycler	60
36	universal testing machine	62
37	sample was secured to the lower fixed compartment	62
	of testing machine by tightening screws.	
38	Box plot showing fracture resistance (N) values for	65
	different groups	
39	Bar chart showing average fracture resistance (N)	67
	for different materials	
40	Bar chart showing average fracture resistance (N)	68
	for different preparation designs	
41	Bar chart showing the effect of preparation design on fracture resistance of ceramic onlays	70
	within each material (A)	
		· ·

42	Bar chart showing the effect of material on	
	fracture resistance of ceramic onlays within	
	each preparation design (B)	
43	type I failure pattern	73
44	type II failure pattern	73
45	type III failure pattern	74
46	type VI failure pattern	74

List of Abbreviations

symbol	meaning
CAD/CAM	Computer-aided
	design/computer-aided
	manufacturing
ZLS	zirconia reinforced lithium
	silicate
PICN	polymer-infiltrated ceramic
	network
RNC	resin nanoceramic
UDMA	Urethane Dimethacrylate
TEGDMA	Triethylene glycol
	dimetacrylate
Bis-GAMA	bisphenol A-glycidyl
	methacrylate
HF	hydrofluoric acid
Y-TZP	yttria-tetragonal zirconia
	polycrystal
MOD	Mesio- occlusal distal
MB	Mesio- buccal
DB	Disto buccal
EA	Vita Enamic anatomical
	preparation
EB	Vita Enamic butt joint
	preparation (flat preparation)
S A	Vita Suprinity anatomical
	preparation
SB	Vita Suprinity butt joint
	preparation(flat preparation)
STL	Standard Tessellation
	Language

INTRODUCTION

Introduction

Restorative procedures such as decay removal or cavity preparation are accompanied by a reduction in tooth stability, decrease fracture resistance, and increase deflection of weakened cusps¹. Different treatment options are available, depending on the degree of destruction, either direct restoration with composite or partial indirect restoration. The main determinants in fracture are the restorative material and the geometry of cavity preparation. Cuspal coverage has been known to greatly affect the fracture resistance of teeth restored with onlay restorations. Numerous designs have been suggested for preparing all-ceramic onlays, as influenced by the mechanical and structural qualities of ceramic materials².

Anatomical preparation design was suggested to reduce the loss of healthy tooth tissue and decrease dentin exposure areas and to define the margin design which contributes to the quality of the adhesion, enhancing the cutting of the enamel prisms and increasing enamel surface area. In addition, the anatomic preparation design improves the insertion of the restoration during cementation and improve the esthetic outcome between the tooth and the restoration³. Flat preparation design can help to transform tensile into compressive stresses. The design also helps to avoid stress peaks and material collections where smooth transitions at flat edges can reduce stress build-up⁴. Due to the high physical properties of indirect restorations, in case of large destruction in