

Engineering Geology and Geophysical Investigations of Rock Masses at the Foundation Level of New El-Fayium City

A Thesis Submitted in Partial Fulfillment for The Master Degree in Geophysics

By

Radwa Tamishe Hassan

B.Sc. in Geology-Geophysics, Geology Department, Faculty of Science, Ain Shams University

Supervised by

Prof. Dr. Abdel-Khalek El-WerrProfessor of Geophysics Department of
Geophysics - Faculty of Science - Ain Shams
University

Prof. Dr. Ali Mohamed Ali AbdallahProfessor of Structural Geology, Geology
Department, Faculty of Science, Ain Shams
University

Dr. Waleed AbdelMoghny Metwally Ogila Lecturer of Engineering Geology, Geology Department, Faculty of Science, Ain Shams University

Cairo-2020

جامعة عين شمس كلية العلوم قسم الجيوفيزياء

استخدام طرق الجيولوجيا الهندسية والجيوفيزيائية لفحص الكتل الصخرية لمنسوب التأسيس بمدينة الفيوم الجديدة

رسالة مقدمة لاستكمال متطلبات الحصول على درجة الماجستير في العلوم (جيوفيزياء-سيزمية) مقدمة من

رضوی طمیش حسن

(بكالوريس العلوم في الجيولوجيا-جيوفيزياء-قسم الجولوجيا-كلية العلوم-جامعة عين شمس)

مقدمة إلى

قسم الجيوفيزياء كليه العلوم جامعة عين شمس

تحت اشراف

أ.د. علي محمد علي عبد الله أستاذ الجيولوجيا التركيبية – قسم الجيولوجيا - كلية العلوم – جامعة عين شمس. أ.د. عبد الخالق محمود محمد الور أستاذ الجيوفيزياء بقسم الجيوفيزياء كلية العلوم جامعة عين شمس

د.وليد عبد المغني متولي عجيله مدرس الجيولوجيا الهندسية – قسم جيولوجيا- كلية العلوم – جامعة عين شمس.

القاهرة-2020

ABSTRACT

New El-Fayium City is one of the most modern urban settlements established in 2000 like New Cairo and New Assuit. The proposed site of the study area is located southeast of El-Fayium City, between latitudes 29°12′ and 29°14′ N and longitudes 30°52′ and 30°54′ E. The city covers an area of about 1,700 km² and it is considered as a wadi plain with a gentle relief in the northeastern direction and at the southwestern of the city, the elevation is more than 70 m where Naalun Mountain is located but at the northern part the elevation is less than 40 m.

The foundation layers at New El-Fayium City consist mainly of impure calcareous sandy silt, calcareous clayey silt, sandy silt, calcareous silty clay which have high swelling characteristics and calcareous sand conglomerate. In the study area, as a result of inadequate studies of the geological formations and nature of the soil and their impact on buildings, several cases of structural imperfections or cracks in concrete members were observed in the city.

It was observed that expansive soils in the study area are considered among the difficult foundation materials and expand upon wetting due to water leakage from agricultural areas. Expansive soils are considered problematic soils for architectural and civil engineers when used as foundation materials or a foundation level to support various types of civil engineering structures. This type of soils may cause minor to major structural damages to pavements and buildings. Clay soils in the study area are mainly containing a considerable amount of montmorillonite (smectite), in addition to kaolinite and illite. Such a mineral (montmorillonite) has high potentiality for swelling or shrinking, due to changes in its moisture content. Moreover, direct and indirect methods are used to evaluate the swelling potentiality of the soils.

This thesis is concerned about carrying out laboratory tests for geological samples as well as shallow seismic field measurements for estimation the engineering-geological characteristics. These engineering-geological characteristics were measured for both soil and rock samples using physical, geotechnical properties for soil samples and physical and mechanical properties for rock samples.

The physical properties of soil samples include moisture content, density, specific gravity, insoluble residue and grain size analysis, while the geotechnical properties include Atterberg limits, consistency indices and swelling potentiality by direct and indirect methods.

The physical and mechanical of the sedimentary rock samples were achieved by determining the moisture content, density, specific gravity, porosity, insoluble residue, grain size analysis and unconfined compressive strength.

Also, ten shallow seismic refraction profiles were acquired in the study area for depth and velocity calculations. Four layers were detected in the area reaching a maximum depth of 50 m. The seismic tomography is one of the most advanced and accurate methods which are used to imagine the subsurface models and produce smoothed and layered models. Multi-analysis of surface wave (MASW) method is applied to obtain 1D shear waves velocity of these ten seismic profiles.

Several thin clay layers intercalated with sand and gypsum pockets were found in the study area. These layers were observed in boreholes but not detected in the seismic sections. The thickness of these clay layers is sometimes below the vertical seismic resolution, so it cannot be detected and other times above it and can be resolved. Therefore, the vertical seismic resolution has been determined to detect the thickness of thin clay layers that may cause soil swelling which in turn, severely damages the foundation and crack the building structures.

Finally, by calculating the compressional and shear wave velocities from shallow seismic refraction profiles, it is easy to estimate the engineering parameters and classify the soil depend on referenced ranges Tables.

LIST OF CONTENTS

Subject	Page
A CIZNOMI EDCMENTS	No.
ACKNOWLEDGMENTS ABSTRACT	2
LIST OF CONTENTS	3 5
LIST OF CONTENTS LIST OF FIGURES	9
LIST OF FIGURES LIST OF TABLES	15
CHAPTER 1: INTRODUCTION	17
1.1 PREFACE.	18
1.2 LOCATION MAP OF EL-FAYIUM NEW CITY.	20
1.3 OBJECTIVE.	20
1.4 METHODOLOG.	22
1.4.1 Engineering-Geological Investigations.	22
1.4.2 Shallow Seismic Refraction Method.	22
1.5 PROBLEM OF THE STUDY AREA.	23
1.6 PREVIOUS WORK.	25
1.6.1 Stratigraphy and Structural Geology.	25
1.6.2 Geomorphology.	27
1.6.3 Boreholes.	28
1.6.4 Geotechnical Study.	32
1.6.5 Geophysics Study.	33
1.6.5.1 Seismicity.	33
1.6.5.2 Seismic profiles data.	35
1.7 CLIMATE OF THE STUDY AREA.	36
CHAPTER 2: GEOLOGICAL SETTING OF THE STUDY AREA	38
2.1 GEOLOGY OF NEW EL-FAYIUM CITY.	39
2.2 GEOMORPHOLOGY OF NEW EL-FAYIUM CITY.	41
2.3 TECTONIC SETTING OF EL-FAYIUM DEPRESSION.	42
2.4 SEQUENCE STRATIGRAPHY.	43
2.4.1 Sequence stratigraphy of El-Fayium depression.	43
2.4.2 Sequence Stratigraphy of New El-Fayium City.	45
CHAPTER 3: PROPERTIES OF SOIL AND ROCK SAMPLES	51
3.1 FIELD INVESTIGATION.	52
3.2. LABORATORY TESTS FOR SOIL SAMPLES.	55
3.2.1 Physical Properties.	55
3.2.1.1 Initial moisture content (Water content).	55
3.2.1.2 Bulk density.	57
3.2.1.3 Specific gravity.	57
3.2.1.4 insoluble residue.	58

3.2.1.5 grain size analysis.	59
3.2.2 Geotechnical Properties of Soil.	65
3.2.2.1 Atterberg limits.	65
3.2.2.2 Consistency indices.	72
i. Plasticity index (P.I).	72
ii. Liquidity index (L.I).	74
iii. Consistency index (C.I).	74
3.2.2.3 Swelling potentiality.	75
i. Direct method.	76
ii. Indirect methods.	78
a) Mineralogical composition:	78
b) Free Swelling (F.S):	83
c) Plasticity Index and Shrinkage Limit	85
3.3 LABORATORY TESTS FOR ROCK SAMPLES	86
3.3.1 Physical Properties of Rock	86
3.3.1.1 Initial moisture content (Water content).	86
3.3.1.2 Bulk density.	86
3.3.1.3 Specific gravity.	86
3.3.1.4 Effective porosity.	86
3.3.1.5 Insoluble residue.	87
3.3.1.6 Grain size analysis.	87
3.3.2 Mechanical Properties of Rock	90
3.3.2.1 Unconfined Compressive Strength	90
3.4 DESCUSSION THE RESULTS OF THE PHYSICAL AND	94
GEOTECHNICAL PROPERTIES OF THE SOIL SAMPLES	71
3.5 DESCUSSION THE RESULTS OF THE PHYSICAL AND	103
GEOTECHNICAL PROPERTIES OF THE ROCK SAMPLES	103
CHAPTER 4: BASIC PRINCIPLES AND INTERPRETATIONAL	
SHALLOW SEISMIC REFRACTION	105
4.1 BASIC PRINCIPLES OF SHALLOW SEISMIC REFRACTION	106
METHOD	100
4.1.1 Preface.	106
4.1.2 Fermat's Principle.	107
4.1.3 Snell's Law of Refraction.	108
4.1.4 Huygens' Principle.	109
4.2 INTERPRETATIONAL METHODS OF SEISMIC REFRACTION	110
4.2.1 True Velocity Determination Methods.	111
4.2.1.1 Arithmetic mean method.	111
4.2.1.2 Harmonic mean method.	112
4.2.1.3 Harmonic mean cos γ method.	112
4 2 1 4 Minus-term method (difference curve method)	113

4.2.1.6 Snell's law method.
4.2.2 Depth Determination Interpretation Methods
4.2.2.1 Depth determination interpretation methods under shot points
a) Horizontal layers.
1) Intercept Times Method
i. In case of two layers
ii. In case of multiple layers
2) Crossover Distance Method
3) Critical Distance Method
b) Dipping layers.
4.2.2.2. Depth determination interpretation methods under each
geophone.
 Delay time method. Plus- minus method.
3) Generalized reciprocal method (GRM).
4) RCS method.
4.2 SEISMIC REFRACTION TOMOGRAPHY.
1) Smoothed Inversion Model.
2) Layered Inversion Model.
, ·
4.2.1 Advantages of seismic tomography.
4.2.2 Disadvantages of seismic tomography.
4.3 SEISMIC RESOLUTION.
CHAPTER 5: SHALLOW SEISMIC REFRACTION METHOD
APPLICATIONS IN NEW EL-FAYIUM CITY AS A CASE AREA
5.1 OVERVIEW.
5.2 SEISMIC SURVEY AND FIELD PROCEDURES.
5.3 SEISMIC REFRACTION DATA PROCESSING.
5.4 SEISMIC REFRACTION DATA INTERPRETATION.
CHAPTER 6: MASW (MULTICHANNEL ANALYSIS OF SURFACE WAVES)
6.1 PREFACE.
6.2 Theory of MASW.
6.3 Types of MASW Methods.
• 1
6.3.1 Active MASW.
6.3.2 Passive MASW.
6.4 Advantages of MASW Methods.
6.5 Disadvantages of MASW Methods.
6.6 Application of MASW Method in New El-Fayium City Study Area.

6.6.1 MASW Data acquisition.	226
6.6.2 MASW Data processing.	226
6.6.3 MASW Data inversion analysis.	227
CHAPTER 7: ENGINEERING PARAMETE DETERMINATION	
FROM SEISMIC WAVES VELOCITIES	240
7.1 OVERVIEW.	241
7.2 ENGINEERING GEOTECHNICAL PARAMETERS	242
7.2.1 Bulk Density (pb).	242
7.2.2 Poisson's Ratio (σ).	242
7.2.3 Young's Modulus (E).	244
7.2.4 Rigidity (Shear) Modulus (µ).	245
7.2.5 Bulk Modulus (K).	246
7.2.6 Lame's Constant (λ).	248
7.2.7 Concentration Index (Ci).	248
7.2.8 Material Index (Mi).	250
7.2.9 Stress Ratio (Si).	251
7.2.10 Density Gradient (Di).	252
7.2.11 The standard penetration test or The N-value.	253
7.2.12 Bearing Capacity of Foundation Materials.	254
7.2.12.1 Ultimate bearing capacity (Qalt).	254
7.2.12.2 Allowable bearing capacity (Qall).	255
$7.2.13 (V_p/V_s)$ Ratio.	257
7.2.14 Unconfined Compressive Strength.	260
SUMMARY AND CONCLUSIONS.	274
REFERENCES.	
ARABIC SUMMARY	298

LIST OF FIGURES

Fig No.	Description	Page
(1.1)	Location map of New El-Fayium city.	20
(1.2)	Damage building in the study area.	24
(1.3)	(a-b) Geologic map of El-Fayium area (After Naim et al., 1993).	27
(1.4)	Locations map of boreholes at New El-Fayium City, Egypt.	29
(1.5)	Borehole (B.H.14) log.	30
(1.6)	Borehole (B.H.15) log.	30
(1.7)	Borehole (B.H.16) log.	31
(1.8)	Borehole (B.H.19) log.	31
(1.9)	Borehole (B.H.20) log.	32
(1.10)	Seismic map of El-Fayium depression from 1900 to 2005	34
	according to	
	(Awad, Mekkawi, Saleh, Saleh, Fergany and Hassib, 2006).	
(1.11)	Location map of previous seismic profiles at New El-Fayium City.	36
(1.12)	Average temperature at El-Fayoum City.	37
(1.13)	Average rainfall at EL-Fayoum City	37
(2.1)	Geological map of El-Fayoum depression (After Kusky et al.,	40
	2011).	
(2.2)	Field images of shear joints filled with gypsum which parallel to	40
	the bedding planes.	
(2.3)	Geomorphology of El-Fayium Depression.	41
(2.4)	Tectonic movement at El-Fayum area (the gray box). Fault trend	42
	with strike-slip movement is shown as dashed line (Neev et al.	
	1982).	
(2.5)	The exposed rock units of Fayoum depression.	44

Fig No.	Description	Page
(2.6)	Field image of Gehannam formation and overlie by the Birket	49
	Qarun formation at southern part of the study area.	
(2.7)	Field image of Birket Qarun formation and overlaid by Pliocene	49
	deposits at Naalun Mountain.	
(2.8)	Field image of Pliocene deposits at Naalun Mountain.	50
(2.9)	Field image of Quaternary deposits which consist of gypsum	50
	deposits as sheet-like layer, unconformable overlying older rocks	
	of Birket Qarun formation at Naalun Mountain.	
(3.1)	Samples locations map from foundations in New El-Fayium City.	53
(3.2)	Cross-section of samples that are collected from Naalun Mountain.	53
(3.3)	Examples of structure damage and Cracks observed in the study	54
	area.	
(3.4)	Visual observation of sample F5 that saturated with water.	56
(3.5)	Sieves analysis and Hydrometer.	60
(3.6)	Classification of studied soil samples according to Folk et al.	62
	(1970).	
(3.7)	Grain size distribution curves of the soil samples in the study area.	63
(3.8)	Atterberg limits.	66
(3.9)	Estimate the liquid limit at 25 blows.	67
(3.10)	Estimation liquid limit of samples F1, F7 and F14.	67
(3.11)	Rolling the plastic limit sample.	69
(3.12)	Evaluate the shrinkage limit using plasticity chart.	71
(3.13)	Unified soil classification of the studied samples using the chart of	71
	Casagrainde.	
(3.14)	Stress-Strain curves for selected soil samples from Oedometer test.	81
(3.15)	X-ray diffracts grams of the powder and treated clay fractions of	82
	different samples.	

Fig No.	Description	Page
(3.16)	Reinforcement raft suffered from some cracks.	84
(3.17)	Classification of studied rock samples according to Folk et al.	89
	(1970).	
(3.18)	Chart of Schmidt hammer.	91
(3.19)	Water content Vs geotechnical parameters.	97
(3.20)	Carbonates content Vs. the geotechnical parameters.	98
(3.21)	Clay percent Vs. the geotechnical parameters.	98
(3.22)	Sand fraction Vs. the geotechnical parameters.	99
(3.23)	Silt fraction Vs. the geotechnical parameters.	99
(3.24)	Geotechnical parameters relationships.	100
(3.25)	Swelling pressure Vs physical parameters.	101
(3.26)	Swelling pressure vs. geotechnical parameters.	102
(3.27)	Montmorillonite percent Vs. shrinkage limit.	102
(3.28)	Kaolinite percent Vs. clay percent.	102
(3.29)	UCS Vs water content.	104
(3.30)	UCS Vs Bulk Density.	104
(3.31)	UCS Vs Porosity.	104
(3.32)	UCS Vs Carbonate content.	104
(3.33)	UCS Vs Insoluble residue.	104
(3.34)	UCS Vs Clay content.	104
(3.35)	Field image of samples F1* and F2* in the study area.	104
(3.36)	Field image of samples F3 and F4 in the study area.	104
(3.37)	Field image of samples F5, F6 and F7 in the study area.	105
(3.38)	Field image of sample F8 as an outcrop of foundation layers under	105
	cracked house in the study area.	
(3.39)	Field image of samples F10, F11 and F12 in the study area.	105
	Gypsum veins Intercalated with calcareous sandy silty clay.	

Fig No.	Description	Page
(3.40)	Field image of samples F14 and F15 in the study area.	105
(4.1)	Seismic refraction survey.	106
(4.2)	Seismic waves on shot record.	107
(4.3)	Path that can be crossed by waves in the least time between two	108
	given points.	
(4.4)	Snell's law.	109
(4.5)	Wavefront according to Huygens' principle.	110
(4.6)	The dipping layer and apparent velocities.	111
(4.7)	The dip angle of the interface relative to the surface.	112
(4.8)	Minus term method to determine true velocity.	113
(4.9)	Reduced curve method to determine true velocity.	115
(4.10)	Time-distance curve of reduced curve method and the zone	115
	of "overlap" is shown in yellow.	
(4.11)	Time-distance curve of two horizontal layers case.	117
(4.12)	Time-distance curve of multiple layers case.	120
(4.13)	Plot of ratio of the crossover distance to depth of first layer as	121
	a function of velocity contrast.	
(4.14)	The Critical Distance Method.	122
(4.15)	The dipping interface between layers, reverse shoot concept	123
	and apparent velocity.	
(4.16)	Definition of delay time.	126
(4.17)	Plus-term method to estimate delay time at the detector.	130
(4.18)	The generalized reciprocal method of refraction interpretation	132
	(Palmer, 1980).	
(4.19)	The refractor velocity analysis function. The smoothest curve (Tv)	132
	has chosen and its XY represent the optimal XY.	
(4.20)	The refractor time-depth function.	133

Fig No.	Description	Page
(4.21)	Depth cross-section produced by GRM.	135
(4.22)	Depth cross-section produced by RCS.	135
(4.23)	The RCS method identification.	137
(4.24)	(a) Field data for normal and reverse shots, (b) Data after filtering,	138
	(c) Output data after using convolution method.	
(4.25)	Seismic tomographic section. (a.1): represent calculated times for	140
	each First-arrival and this time updated during the processing.	
	(a.2): represent picked first-arrival times in the seismic records.	
	(a.3): indicates tomographic cells with initial velocity Vin.	
	(a.4): refer to position of geophones.	
	(b.5): shows the seismic record and pick of first arrivals.	
(4.26)	Velocity models construction.	141
(4.27)	Raypath lij through segmented cells.	144
(4.28)	The window of Layered Inversion mode.	146
(4.29)	(a) The source wavelet as time domain. (b) The dominant	149
	frequency represents the largest anomaly.	
(5.1)	Seismic profile location map in the study area.	153
(5.2)	Schematic plan of field seismic refraction survey layout.	154
(5.3)	Sledgehammer as a source of seismic energy.	155
(5.4)	Field image of OYO McSeis 1500 - 24-channels seismograph with	157
	cables and planted geophones.	
(5.5)	Shot gathers of profile 1.	157
(5.6)	Shot gathers of profile 2.	157
(5.7)	Shot gathers of profile 3.	157
(5.8)	Shot gathers of profile 4.	158
(5.9)	Shot gathers of profile 5.	161
(5.10)	Shot gathers of profile 6.	161

Fig No.	Description	Page
(5.11)	Shot gathers of profile 7.	161
(5.12	Shot gathers of profile 8.	162
(5.13)	Shot gathers of profile 9.	162
(5.14)	Shot gathers of profile 10.	162
(5.15)	Profile 1 time-distance curves and layered inversion 2D velocity	167
	model.	
(5.16)	Dominant frequency and vertical resolution (VR) for each layer of	168
	P1.	
(5.17)	P1: a) Smoothed inversion P-wave velocity-depth model, b)	169
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	
(5.18)	Profile 2 time-distance curves and layered inversion 2D velocity	172
	model.	
(5.19)	Dominant frequency and vertical resolution (VR) for each layer of	173
	P2.	
(5.20)	P2: a) Smoothed inversion P-wave velocity-depth model, b)	174
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	
(5.21)	Profile 3 time-distance curves and layered inversion 2D velocity	177
	model.	
(5.22)	Dominant frequency and vertical resolution (VR) for each layer of	178
	P3.	
(5.23)	P3: a) Smoothed inversion P-wave velocity-depth model, b)	179
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	
(5.24)	Profile 4 time-distance curves and layered inversion 2D velocity	182
	model.	

Fig No.	Description	Page
(5.25)	Dominant frequency and vertical resolution (VR) for each layer of	183
	P4.	
(5.26)	P4: a) Smoothed inversion P-wave velocity-depth model, b)	184
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	
(5.27)	Profile 5 time-distance curves and layered inversion 2D velocity	187
	model.	
(5.28)	Dominant frequency and vertical resolution (VR) for each layer of	188
	P5.	
(5.29)	P5: a) Smoothed inversion P-wave velocity-depth model, b)	189
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	
(5.30)	Profile 6 time-distance curves and layered inversion 2D velocity	192
	model.	
(5.31)	Dominant frequency and vertical resolution (VR) for each layer of	193
	P6.	
(5.32)	P6: a) Smoothed inversion P-wave velocity-depth model, b)	194
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	
(5.33)	Profile 7 time-distance curves and layered inversion 2D velocity	197
	model.	
	5.34): Dominant frequency and vertical resolution (VR) for each	198
	layer of P7.	
(5.35)	P7: a) Smoothed inversion P-wave velocity-depth model, b)	199
	Relative sensitivity model, c) Velocity gradient model, d) Quality	
	parameter model, e) DOI index model.	