

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

ZAGAZIG UNIVERSITY BENHA BRANCH FACULTY OF SCIENCE

STUDIES ON SOLID STATE REACTIONS BETWEEN METAL BASIC CARBONATES AND ORGANIC ACIDS

THESIS

SUBMITTED FOR PARTIAL FULFILLMENT FOR MASTER DEGREE OF SCIENCE (M.Sc.) IN CHEMISTRY

BY

WAFAA ABD ALLAH BAYOUMY

B.Sc. (Chemistry)

Supervised By

Prof Dr. / MAHMOUD AHMED MOUSA

Dean of Faculty of Science Zagazig University - Benha

ASS.PROF. MOUSTAFA M. MOUSTAFA

DR. ZEINABE A. ABD-EL-BARI

Ass.Prof. of Inorganic Chemistry
Faculty of Science, Zagazig University - Benha

Lecturer of Physical Chemistry
Faculty of Science, Zagazig University-Benha

1994

STUDIES ON SOLID STATE REACTIONS BETWEEN METAL BASIC CARBONATES AND ORGANIC ACIDS

ADVISORS	•
Prof. Dr. Mahmoud Ahmed Mousa	,
Asst.Prof. Dr. Moustafa M. Moustafa	
Dr. Zainah A. Abd Fl Bari	

I do thanks god for the known and uncountable reasons. I owe my deep sincerest thanks and gratitude to Prof. Dr. Mahmoud Ahmed Mousa, Prof. of Physical Chemistry and Dean of Faculty of Science, Zagazig Univ.-Benha for suggesting the research problem, and also for his fruitful discussions, crticism, continuous help, encouragement and guidance through out the progress of this work.

High appreciations and deep thanks to Dr. Moustafa
M. Moustafa Asst. Prof. of Inorganic Chemistry, Faculty of "
Science, Zagazig Univ.-Benha for his kind help.
encouragement and keen interest during all steps of the work.

I'm also highly indebted to Dr. Zeinab A. Abd-El-Bari Lecturer of Physical Chemistry, Faculty of Science, Zagazig Univ.-Benha for her kind help encouragement and assistance throughout this work.

Many thanks extend also to the staff members of Chemistry Dep., Faculty of Science, Zagazig Univ.-Benha for their cooperation and encouragement.

CONTENTS

•	Pag
Chapter I. Introduction	1
I.1 Aim of The Work	12
Chapter II. Theoretical Review and Methods of	
Calculations	
II.1 The Kinetic Equations for Thermal Analysis Data	1.3
II.2 Differential Calculation Method for TG-Data	19
II.3 Integral Calculation Method for TG-Data	20
II.4 Kinetic Calculation Method for DTA-Data	22
II.5 Kinetic Equations for Capillary Technique	29
Chapter III. Experimental	
III.1 Materials and Preparation of Samples	33
III.2 Following of The Solid-State Reaction Using	
Capillary Technique	33
III.3 Infrared Spectral Analysis	34
III.4 Thermal Analysis	34
III.5 Chemical Analysis	34
III.6 Elemental Analysis	<i>3</i> 5
III.7 Magnetic Susceptibility Measurements	35
Chapter IV. Characterization of Products	4+
IV.1 Infrared Spectra	42
IV.2 Magnetic Measurements	6 2
IV.3 Thermal Analysis	64

	Page
Chapter V. Results and Discussion of Kinetics V.1 Thermal Analysis Method	79
V.1.1 From TG-curves	80
V.1.1.a Differential Method	80
V.1.1.b Integral Method	80
V.1.2 From DTA-Curves	81
V.2 Capillary Technique Method	102
Summary and Conclusions	113
References	116
Appendix	123
Arabic Summary	

LIST OF TABLES

	Page
1- The Common Forms of $F(\alpha)$ and $G(\alpha)$.	14
2- Chemical and Elemental Analysis Results for The Products of The Reactions in Solid and Liquid Phases.	. 38
3- Results of Chemical Analysis by EDTA for Products of The Reaction between Basic Carbonates and Organic Acids .	41
4- The Main IR-Vibrational Spectra of The Investigated Reactants and Their Products.	43
5- Magnetic Susceptibility for The products of The Reaction between Organic acids and Basic Carbonates in Solid and Liquid Phases.	63
6- Thermal Analysis Data for The Decomposition Solid Solid Reactions between Organic Acids and Basi Carbonates Invesigated.	c 65
7- The Correlation Coefficient (r) and Standard Deviation (s) for The Least-Squares Fitting of $\ln[(d\alpha/dt)/F(\alpha)]$	n)]

· · · · · · · · · · · · · · · · · · ·	
vs. I/T for The Reactions between Basic Cobalt	
Carbonate and Organic Acids.	83
8- The Correlation Coefficient (r) and Standard Deviation (s) for The Least-squares Fitting of $\ln[(d\alpha/dt)/F(\alpha)]$	ı.
vs. 1/T for The Reactions between Basic Copper	
Carbonate and Organic Acids .	84
,	
9- The Correlation Coefficient (r) and Standard Deviation	
(s) for The Least-squares Fitting of $ln[(d\alpha/dt)/F(\alpha)]$	
vs. 1/T for The Reactions between Basic Zinc Carbonate	
and Organic Acids.	85
10- The Correlation Coefficient (r) and Standard Deviation (s) for The Least-squares Fitting of $\ln[(G(\alpha)/T1.921503]]$ vs. $1/T$ for The Reactions between Basic Cobalt	
Carbonate and Organic Acids .	86
 11- The Correlation Coefficient (r) and Standard Deviation (s) for The Least-squares Fitting of In[(G(α)/T1.921503)] vs. 1/T for The Reactions between Basic Copper 	
Carbonate and Organic Acids .	87
12- The Correlation Coefficient (r) and Standard Deviation (s) for The Least-squares Fitting of $\ln[(G(\alpha)/T^{1.921503})]$	
vs. 1/T for The Reactions between Basic Zinc Carbonate and Organic Acids .	88

Page

•	Cago
13- Kinetic Parameters for Solid-Solid Reactions between Organic Acids and Basic Carbonates Investigated Using R2-Model by Applying Differential Method	90
14- Kinetic Parameters for Solid-Solid Reactions between Organic Acids and Basic Carbonates Investigated Using R2-Model by Applying Integral Method .	91
15- Kinetic Parameters for Solid-Solid Reactions between Organic Acids and Basic Carbonates Investigated Using DTA and DDTA-Curves.	94
16- Crystal Structures, Ionization Constants and Heat of Sublimations for Free Reactant Acids (64,65)	9 5
17- The Colour of The Reactants and The Products for The Reaction of Organic Acid with Basic Cobalt and Copper Carbonates.	urs
18- Kinetic Data for The Solid Reactions between Organic Acids and Basic Cobalt Carbonate Using Equation : $\zeta^2 = Kt + C$, 110
19- Kinetic Data for The Solid Reactions between Organic Acids and Basic Copper Carbonate Using Equation : $\zeta^2 = Kt + C$	IJI
-	•

LIST OF FIGURES

· · · · · · · · · · · · · · · · · · ·	Pagc
1- DTA and DDTA diagrams	
(a) Represents Typical DTA Diagram .	
(b) Represents Typical DDTA Diagram .	26
Paradia (Pth)	
2- I.R. for Basic Cobalt Carbonate, Benzoic (BZ), Phthalic (Pth),	-
Cobalt Benzoate (Co-BZ), Cobalt Phthalate (Co-Pth) in Solid.	
(S) and Liquid (L) Phases	47
3- I.R. for Basic Copper Carbonate, Benzoic (BZ), Phthalic (Pth),	
Copper Benzoate (Cu-BZ), Copper Phthalate (Cu-Pth) in	
Solid (S) and Liquid (L) Phases .	48
4- I.R. for Basic Zinc Carbonate, Benzoic (BZ), Phthalic (Pth),	
Zinc Benzoate (Zn-BZ), Copper Phthalate (Zn-Pth) in Solid	
(S) and Liquid (L) Phases .	49
S. I.B. (Bi- Cabelt Cambanata Caliculia (a HR7)	
5- I.R. for Basic Cobalt Carbonate, Salicylic (o-HBZ),	
'p-hydroxybenzoic (p-HBZ), Cobalt Salicylate (Co-o-HBZ)	
and Cobalt Hydroxybenzoate (Co-o-HBZ) in Solid (S) and	
Liquid (L) Phases .	50
6- I.R. for Basic Copper Carbonate, Salicylic (o-HBZ),	,
p-hydroxybenzoic (p-HBZ), Copper Salicylate (Cu-o-HBZ)	
and Copper Hydroxybenzoate (Cu-o-HBZ) in Solid (S) and	
Liquid (L) Phases	51

52

53

54

55

56

57

- 7- I.R. for Basic Zine Carbonate, Salicylic (o-HBZ), p-hydroxybenzoic (p-HBZ), Zine Salicylate (Zn-o-HBZ) and Zine Hydroxybenzoate (Zn-o-HBZ) in Solid (S) and Liquid (L) Phases.
- 8- I.R. for Basic Cobalt Carbonate, p-nitrobenzoic (p-NBZ), o-aminobenzoic(o-ABZ), Cobalt Nitrobenzoate (Co-p-NBZ) and Cobalt Aminobenzoate (Co-o-ABZ) in Solid (S) and Liquid (L) Phases.
- 9- I.R. for Basic Copper Carbonate, p-nitrobenzoic (p-NBZ), o-aminobenzoic(o-ABZ), Copper Nitrobenzoate (Cu-p-NBZ) and Copper Aminobenzoate (Cu-o-ABZ) in Solid (S) and Liquid (L) Phases.
- 10- I.R. for Basic Zinc Carbonate, p-nitrobenzoic (p-NBZ), o-aminobenzoic (o-ABZ), Zinc Nitrobenzoate (Zn-p-NBZ) and Zinc Aminobenzoate (Zn-o-ABZ) in Solid (S) and Liquid (L) Phases
- 11- I.R. for Basic Cobalt Carbonate, Oxalic (Ox.), Tartaric (Tar.), Cobalt Oxalate (Co-Ox.) and Cobalt Tartarate (Co-Tar.) in Solid (S) and Liquid (L) Phases.
- 12- I.R. for Basic Copper Carbonate, Oxalic (Ox.), Tartaric (Tar.), Copper Oxalate (Cu-Ox) and Copper Tartarate (Cu-Tar.) in Solid (S) and Liquid (L) Phases.