

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

NUMERICAL MODELLING AND SYSTEM IDENTIFICATION OF A HISTORIC MASONRY STRUCTURE IN HISTORIC CAIRO USING DYNAMIC INVESTIGATION TESTS

By

Ahmad Reda Abd-Elslam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

NUMERICAL MODELLING AND SYSTEM IDENTIFICATION OF A HISTORIC MASONRY STRUCTURE IN HISTORIC CAIRO USING DYNAMIC INVESTIGATION TESTS

By

Ahmad Reda Abd-Elslam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Sherif A. Mourad

Prof. Dr. Adel G. El-Attar

Professor of Steel Structures and Bridges Structural Engineering Department Faculty of Engineering, Cairo University Professor of RC Structures and Bridges Structural Engineering Department Faculty of Engineering, Cairo University

NUMERICAL MODELLING AND SYSTEM IDENTIFICATION OF A HISTORIC MASONRY STRUCTURE IN HISTORIC CAIRO USING DYNAMIC INVESTIGATION TESTS

By

Ahmad Reda Abd-Elslam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee	
Prof. Dr. Sherif A. Mourad,	Thesis Main Advisor
Prof. Dr. Adel G. El-Attar,	Advisor
Prof. Dr. Ashraf Mahmoud Gamaleldin Osman	Internal Examiner
Prof. Dr. Ahmed Elghazouli	External Examiner

- Professor of Structural Engineering - Section Head, Imperial College London.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Engineer's Name: Ahmad Reda Abd-Elslam

Date of Birth: 25/12/1993 **Nationality:** Egyptian

E-mail: reda.ahmad@cu.edu.eg

Phone: 01112011927

Address: 1st district, 6th of October city,

Giza, Egypt

Registration Date: 1/3/2017 **Awarding Date:** //2021

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Dr. Shrief Ahmed Mourad **Prof. Dr.** Adel Galal El-Attar

Examiners:

Prof. Dr. Sherif A. Mourad (Thesis main advisor)
Prof. Dr. Adel G. El-Attar (Advisor)
Prof. Dr. Ashraf Osman (Internal examiner)
Prof. Dr. Ahmed Elghazouli (External examiner,

Imperial College London)

Title of Thesis:

Numerical modelling and system identification of a historic masonry structure in Historic Cairo using dynamic investigation tests

Key Words:

Dynamic identification; Numerical modelling; System identification; Model updating; Neural networks

Summary:

Historic Cairo is a UNESCO World Heritage Site since 1979. It has a large number (more than 600) of historic structures. This in turn requires much studies and research to conserve these structures for their cultural, religious and economic values. This thesis studies the dynamic behavior of Fatima Khatun, a historic mausoleum in Historic Cairo dating back to the 13th c. and constructed from brick and stone masonries. A preliminary finite element model was created employing a detailed architectural documentation, material survey and visual inspection. The brick and stone physical and mechanical properties were estimated based on in-situ sampling and laboratory tests. Dynamic identification tests were carried out and followed by system identification to characterize the dynamic properties of the structure (natural frequencies, mode shapes and damping ratios). Numerical model updating was carried out to match the obtained experimental dynamic properties. The obtained updated model could be employed in further studies for the structural safety assessment.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmad Reda Abd-Elslam Date: /6/2021

Signature:

Dedication

To my beloved mother.