

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

CORROSION OF WELDED CARBON STEEL PIPES IN OIL PRODUCTION FIELDS AND ITS MITIGATION

By

Mazen Mahmoud Mohamed El Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Chemical Engineering

CORROSION OF WELDED CARBON STEEL PIPES IN OIL PRODUCTION FIELDS AND ITS MITIGATION

By Mazen Mahmoud Mohamed El Morsy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in **Chemical Engineering**

Under the Supervision of

Prof. Dr. Omar E. Abdel Salam

Professor of Chemical Engineering

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

CORROSION OF WELDED CARBON STEEL PIPES IN OIL PRODUCTION FIELDS AND ITS MITIGATION

By Mazen Mahmoud Mohamed El Morsy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Omar E. Abdel Salam,

Thesis Main Advisor

Prof. Dr. Nabil Abdel Moneum,

Internal Examiner

Prof. Dr. Abdel Ghany El-Hosry,

External Examiner

Professor of National Research Center, Cairo, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Mazen Mahmoud Mohamed

Date of Birth: 12/6/1980 **Nationality:** Egyptian

E-mail: mazen1261980m@yahoo.com

Phone: +201094821678

Address: 5 Al-Halia School St. Giza

Registration Date: 10/2012 **Awarding Date:** 9/7/2020

Degree: Doctor of Philosophy **Department:** Chemical Engineering

Supervisors:

Prof. Omar E. Abdel Salam

Examiners:

Prof. Omar E. Abdel Salam (Thesis main advisor)
Prof. Nabil Abdel Moneum (Internal examiner)
Prof. Abdel Ghany El-Hosry (External examiner)
(Professor of National Research Center, Cairo, Egypt)

Title of Thesis:

Corrosion of Welded Carbon Steel Pipes in Oil Production Fields and its Mitigation

Key Words:

Corrosion; Preferential weld; Flow induced; Carbon steel; Oil

Summary:

In oil production fields, corrosion of welded carbon steel pipes frequently occurs in areas near welds. Corrosion in other areas may take place at a lower frequency and with a lower detrimental effect. In this thesis, a field survey is conducted of eight oil petroleum fields over a period of seven years. Testing of specimens of carbon steel welded joints is carried out under simulated conditions. This study investigates the predominated corrosion damage mechanisms in welded carbon steel pipes. It examines the critical factors triggering corrosion mechanisms and the techniques for corrosion monitoring and mitigation. Flow-induced corrosion and preferential weld corrosion were found to be the most effective mechanisms compared to pitting and microbiologically induced corrosion. Detrimental factors of corrosion mechanisms include flow rates and changes in process parameters of pH, fluid resistivity, and some anion concentrations. The corrosion mitigation was achieved by increasing the dosage of injected corrosion inhibitors.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mazen Mahmoud Mohamed	Date: / /
Signature:	

Acknowledgments

I would like to express my sincere appreciation of Prof. Dr. Omar E. Abdel Salam, whose encouragement, guidance and support throughout this journey enabled me to develop a profound understanding of this research.

I offer my regards and blessings to all of those who supported me in any respect during the completion of this thesis.

Table of Contents

LIST OF TABLES	vi
LIST OF FIGURES	viii
NOMENCLATURE	X
ABSTRACT	xii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: THEORETICAL BACKGROUND AND LITERATURE SURVEY 2-1 Carbon steel classifications	4
2-2 Welding Principles	
	8
2-2-1 Definitions	8
2-2-2 Arc welding types	9
2-2-2-1 Shielded Metal Arc Welding (SMAW)	9
2-2-2-2 Gas Tungsten Arc Welding (TIG)	9
2-2-3 Heat Affected Zone	10 12
2-2-3-1 Physical and mechanical properties of HAZ	13
2-2-3-2 Factors affect the properties of HAZ	13
2-2-3-3 Cooling rate effect	14
2-2-3-4 HAZ classification according to grain size	14
2-2-3-5 Heat effect on HAZ width	15
2-2-3-6 Estimation of HAZ width	16
2-3 Corrosion mechanisms in weldments	17
2-3-1 Preferential weld corrosion	18
2-3-1-1 Critical factors that affect the PWC	18
2-3-1-2 Effect of microstructure on corrosion resistance of weldment	10
carbon steel	19
2-3-1-3 Effect of fluid characteristics on corrosion resistance of welded carbon steels	20
2-3-1-4 The effect of aging on PWC rate	
2-3-1-5 Effects of welding consumables and welding process	22
2-3-1-6 Effect of welding joint type on PWC behavior	22
2-3-2 Flow induced corrosion	23
2-3-2-1 Fluid dynamics definitions	24
2-3-2-3 Flow basics related to corrosion	25
2-3-2-4 Boundary layer disruption	25
2-3-2-5 The hydrodynamic parameters & lab tests	26 30
2-3-2-6 Effect of CO ₂ on rate of FIC	30
2-3-3 Pitting corrosion	31
2-3-3-1 Critical factors	31
2-3-3-2 Morphology of pitting corrosion	32
2-3-4 Microbiologically Induced Corrosion (MIC)	34
2-3-4-1 Critical factors	34
2-3-6-2 Morphology of MIC	34

	ELD SURVEY PRINCIPLES AND EXPERIMENTAL
	Dain wind an
3 – I Field Surv	vey Principles
	3-1-1 Management of damage failure modes in welded carbon
	steel facilities
	3-1-1-2 UT inspection of pipes
	3-1-1-3 Definition of pipework, pipe system, anomaly case and corroded
	area
	3-1-1-4 UT inspection program
	3-1-1-5 Corrosion rate types
	3-1-2 Characteristics of petroleum oil fields in thesis's statistical
	analyses
	3-1-2-1 Oil field flow diagram and characteristics of the selected pipe
	system
	3-1-2 Field statistical analysis of eight oil fields
	3-1-4 Field statistical analysis of eight of fields
	3-1-4-1 Anomaly cases
	3-1-5 Field statistical analysis for change in corrosive
	parameters in oil field
	parameters in on noid
3–2 Experimen	tal Work Scope
	3-2-1 Corrosive Mediums "Electrolytes" from an Oil Field
	3-2-2 Lab Experiments
	3-2-2-1 Corrosion strength of field's samples
	3-2-2-2 Corrosive medium in isolated pipe
	3-2-2-3 Corrosion behavior of flowing of low corrosive water
	3-2-2-4 Analysis for corrosion products of a field anomaly case
	3-2-3 Corrosion Mitigation Field Experimental Work
	3-2-3-1 Control of pH in Oil Field
	3-2-3-2 Increase injection dosage of corrosion inhibitor
	ESULTS AND DISCUSSION
4-1 Results and	Discussion for Field Statistical Analyses
	4 -1-1 Field statistical analysis of eight oil fields
	4-1-1-1 Internal corrosion rate of welded carbon steel pipes
	4-1-1-2 Effect of water resistivity and flow rate on internal corrosion rate
	4-1-1-3 Effect of pH on internal corrosion rate
	4-1-2 Field statistical analysis of selected anomaly cases
	4-1-2-1 Anomaly cases for pipework
	4-1-2-2 Anomaly case for pipeline
	4-1-2-3 Results for filed statistical analysis for the selected anomaly cases 4-1-3 Field statistical analysis for change in corrosive
4 2 D14 1	parameters in oil field
4-2 Kesuits and	Discussion for Experimental Work
	4-2-1 Corrosion strength of field's samples experiment
	4-2-1-1 Effect of corrosive medium parameters on corrosion behavior 4-2-1-2 Effect of chloride and sulphide ions on failures of welded carbon
	steel pipes
	4-2-1-3 Corrosion coupon for monitoring of PWC
	4-2-2 Corrosive medium in isolated pipe
	4-2-2-1 Polarity of heat affected zone (HAZ)
	4-2-2-2 Effect of corrosive medium of corrosion in HAZ
	4-2-2-3 Corrosion rate of localized and general corrosion
	4-2-3 Corrosion behavior of flowing of low corrosive water
	4-2-4 Analysis for corrosion products of a field anomaly case

102
102
103
104
104
106
108

List of Tables

Table	Subject	Page
2-1	Classification of carbon steel according to carbon percentage	5
2-2	Effect of main alloying element on properties of carbon steel alloys	6
2-3	Metal composition for examples of carbon steel alloys	7
2-4	Effect of welding process parameters on corrosion behavior of weld area	22
2-5	Effect of fluid flow on corrosion damage mechanisms	25
3-1	Water characteristics of each oil field	47
3-2	Value for field's flow rate	47
3-3	Metal composition for carbon steel grade B alloy	47
3-4	Complete water analysis for anomaly case (1)	48
3-5	Complete water analysis for anomaly case (2)	48
3-6	Complete water analysis for anomaly cases (3, 4 & 5)	49
3-7	Complete water analysis for anomaly case (6)	49
3-8	The change in water parameters from year "Y1" to year "Y7" in field "F1"	51
3-9	Value for field "F1" flow rate in two sub periods	51
3-10	Water analysis of field water samples "F-1", "S-1" and "S-2"	54
3-10	Dimensions of immersed coupons and arrangement in corrosive	J 4
5 11	mediums	55
3-12	Metal composition for Steel Grade – 35	56
3-13	Wall thickness measurements of grid UT inspection	60
3-14	Details and characteristics for welding of new welds in pipe pieces to	
2.15	construct a pipework	61
3-15 3-16	Details for flowing conditions in the experiment period	63
3-10	Main components of chemical composition of injected corrosion inhibitor in field "F1"	67
4-1	Number of recorded anomaly cases in each field through years Y1-	
	Y7	68
4-2	Fields in ascending arrangement with respect to the water resistivity	
4-3	combined with recoded anomaly cases, water pH & flow rate	68
4-3 4-4	Values for FPY for each field combined with same data in table (4-2)	69 72
4-4	Pipe diameter and Flow conditions of each case	72
4-3 4-6	Thickness measurement results for pipework cases (cases $1-6$) Details of corroded areas in six anomaly cases with different relative	72
4-0	information	75
4-7	Arbitrary classes & sub-classes for distances from weld	78
4-8	Analysis for corroded areas of anomaly cases $(1-6)$	79
4-9	Values for reduction in wall thickness % of different corroded area in	
	each class	80
4-10	Maximum corrosion rates and reduction in thickness for damage	00
1 1 1	mechanisms in anomaly cases	80
4-11	Analysis for corroded areas of anomaly case (7)	81
4-12	Normalized frequency for corroded areas of class A in 20mm distance regions	82
	distance regions	02

4-13	FPY for the two sub periods in field "F1" includes main operating conditions in each sub period	84
4-14	Conditions of failure cases in current sub period in field "F1"	85
4-15	Corrosion rate and damage mechanism based on 4t criteria for	0.5
	anomaly cases in table (4-14)	89
4-16	Results of corrosion rate and Fe content for six coupon experiment in section "3-2-2-1"	90
4-17	Summary of corrosive medium parameters and results corrosion rates	
	and Fe content	93
4-18	Fields data with FPY and Cl ⁻ / SO ₄ ²⁻ ratio	94
4-19	Value of Cl ⁻ / SO ₄ ²⁻ ratio against corrosion rate in different corrosive	
	mediums	95
4-20	Readings of high sensitive voltammeter at different locations of the	
	voltammeter's probes	96
4-21	Results of corrosion behavior of different corrosive medium	97
4-22	Results of XRF analysis for corrosion product inside of the failed	
	elbow joint	101

List of Figures

Figure	Subject	Page
2-1	Schematic Drawing for SMAW	10
2-2	Schematic Drawing for TIG	11
2-3	Schematic Drawing for MIG	11
2-4	Schematic drawing for weld cross Section	12
2-5	Schematic drawing for micro-structurally distinct regions	13
2-6	Illustration drawing for austenitic transformations	15
2-7	Schematic drawings of some of common welded joints types	23
2-8	Energy transfer in the sub-layer	26
2-9	Regions of hydrodynamic boundary layer	26
2-10	Fluctuations in the wall shear stress and wall pressure in boundary layer due to streaks	27
2-11	Disturbance downstream weld bead	28
2-12	Velocity gradient due to existing of weld bead	29
2-13	Wall shear stress due to existing of weld bead	29
2-14	Photo for pitting area in flow direction	29
2-15	Schematic drawing of different shapes of pits	33
2-16	Photo of internal pitting corrosion of piping portion	33
2-17	Photo of hole in pipeline effected to MIC	35
3-1	Photo of Ultrasonic device including designations for main device elements	37
3-2	Photo of scanning process of the flaw detector on the pipe's external surface	38
3-3	Photo of Tee – joint after removing from its pipework system	39
3-4 A	Photo for a Tee – joint in figure $(3-2)$ after cutting and blasting	40
3-4 B	Photo for zoom in close view for localized corroded area in figure	
3-5	(3 – 4A) Example of actual UT report for UT – inspected pipe in an oil field	40
3-6	Example of an isometric drawing of a pipework system in actual oil	41
3-7	field	42
	trees exist	44
3-8 3-9	Examples of X – trees of the produced wells	44 45
3-10	Flow diagram of the flow of the produced oil	43 46
3-11	Block flow diagram illustrates locations of field samples	53
3-12	Photos of constructed welded pipe and its cutting coupons	55
3-13	Photos of welded pipe of alloy grade 35 after filling with seawater and sealing of their ends	57