

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

NUMERICAL INVESTIGATION ON AIR FLOW CHARACTERISTICS INSIDE A TELECOMMUNICATION SHELTER ROOM

By

Emad Abdelsamad Abdelhamid Abdelrazek

A Thesis submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

NUMERICAL INVESTIGATION ON AIR FLOW CHARACTERISTICS INSIDE A TELECOMMUNICATION SHELTER ROOM

By **Emad Abdelsamad Abdelhamid Abdelrazek**

A Thesis submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

Under the Supervision of

Dr. Gamal Abdel-Moniem El Hariry

Associate Professor, Mechanical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Ahmed Mahmoud Abouzaid

Lecturer, Mechanical Power Engineering
Department
Faculty of Engineering, Cairo University

NUMERICAL INVESTIGATION ON AIR FLOW CHARACTERISTICS INSIDE A TELECOMMUNICATION SHELTER ROOM

By Emad Abdelsamad Abdelhamid Abdelrazek

A Thesis submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

	,
Dr. Gamal Abd	el-Moniem El Hariry, Thesis Main Advisor
Prof. Dr. Sayed	Ahmed Kaseb, Internal Examiner
	. A. Abdel-Hadi, External Examiner culty of Engineering, Benha University

Examining Committee.

FACULTY OF ENGINERING, CAIRO UNIVERISTY
GIZA, EGYPT
2021

Engineer's Name: Emad Abdelsamad Abdelhamid Abdelrazek

Date of Birth:23/06/1992Nationality:Egyptian

Phone: +201064559118

Email: engemad017@gmail.com

Address: 19 Kokh street, Asafra bahary, montaza, Alexandria

Registration Date: 01/03/2017 **Awarding Date:**/2021

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors:

Assoc. Prof. Dr. Gamal Abdel-Moniem El Hariry

Dr. Ahmed Mahmoud Abuzaid

Examiners:

Assoc. Prof. Dr. Gamal Abdel-Moniem El hariry (Thesis main advisor)

Prof. Dr. Sayed Ahmed Kaseb (Internal examiner)
Prof. Dr. Eed A. A. Abdel-Hadi (External examiner)

- Shoubra Faculty of Engineering, Benha University

Title of Thesis: Numerical investigation on air flow characteristics inside a

telecommunication shelter room.

Key Words: Numerical investigation; Air flow characteristics; Telecommunication

shelter; Computational fluid dynamics (CFD); Thermal performance.

Summary:

The main point of this thesis is to investigate the thermal performance and air flow characteristics inside a telecommunication shelter by changing the place of computer room air conditioning (CRAC) to get optimum air distribution. The study is carried out using computational fluid dynamics (CFD) simulation using a commercial CFD code ANSYS 17.

The investigation conducted for four cases, first and second cases represent the change of CRAC place and their effect on air flow distribution, third and fourth case represent the separation between inlet and outlet flows of battery cabinet and their effect on thermal performance.

It's observed from the results that the temperature of supplied cooled air to main components decreases by percentages of 23.5%, 7.6%, 23.6% and 35.3% for different devices due to air flow distribution enhancement. Finally, it's observed that the best performance for air distribution inside the shelter is obtained from fourth case.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Emad	Abdelsamad	Abdelhamid	Abdelrazek	Date:	/	/ 2021

Signature:

Dedication

I dedicate this thesis to the soul of my beloved father (may god bless him) who was the source of my persistence.

Acknowledgments

In the beginning, I am grateful to God for the good health and well-being that are necessary to complete this thesis. I am also using this opportunity to express my gratitude to everyone who supported me throughout the study. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice during the work. I am sincerely grateful to them for sharing their truthful and illuminating views on a number of issues related to this thesis.

I express my special thanks to Dr. Gamal Abd El Moniem El Hariry and Dr. Ahmed Abouzaid for their support, guidance and encouragement.

I would also like to thank all my professors for their help throughout the years of my academic studies. I extend my gratitude to my dear colleagues and friends Mohamed Sherif and Ashraf Mahmoud for their valuable suggestions and noteworthy discussions. Finally, special thanks to my family for their patience, care and support to be able to continue this research to the end.

Table of Contents

CONTENTS	IV
LIST OF TABELS	VII
LIST OF FIGURES	VIII
NOMENCLATURE	XI
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. The importance of CFD analysis	2
1.3. Thermal analysis and design criteria for telecommunication shelters	2
1.4. Selection of cooling techniques and airflow management	3
1.4.1. Raised floors air supply plenum	4
1.4.2. Overhead air supply plenum	5
1.4.3. Overhead ducted air supply delivery	5
1.4.4. Cooling footprints	6
1.4.5. Hot and cold aisles	6
1.5. Techniques of thermal management at telecommunication shelters	7
1.5.1. Electronics board level technique	8
1.5.2. Cabinet and rack level technique	10
1.5.3. Room level technique	12
CHAPTER 2: LITERATURE REVIEW	14
2.1. Introduction	14
2.2. Related previous work	14
2.3. Scope of present work	22
CHAPTER 3: GOVERNING EQUATIONS	23
3.1. Introduction	23
3.2. Fluid element	23
3.3. Mass conservation equation (Continuity)	24
3.4. Momentum conservation equation	25
3.5. Energy conservation equation	27
3.6. Turbulence modeling	29
3.6.1. The physics of fluid turbulence	29
3.6.2. Standard k-ε model	30
3.6.3. Realizable k-ε model	31

3.6.4. RNG k-ε model	32
3.6.5. Definitions applicable to k-ε models	34
CHAPTER 4: NUMERICAL VALIDATION MODEI	
EXPERIMENTAL DATA	36
4.1. Introduction	36
4.2. Data center cell description	36
4.3. Model inputs measurements and data	37
4.4. Numerical modeling	38
4.4.1. Geometry description	38
4.4.2. Mesh generation	39
4.4.3. Boundary conditions	42
4.5. Validation model results	43
4.5.1. Results at height of 0.5 feet	43
4.5.2. Results at height of 4.5 feet	45
4.5.3. Results at height of 8.5 feet	46
4.6. Discussion of results	55
CHAPTER 5: CASE STUDY	56
5.1. Introduction	56
5.2. Load characteristics and design criteria	56
5.3. Model description	56
5.3.1. Shelter room dimensions	56
5.3.2. Devices description	57
5.4. Boundary conditions of case studies	62
5.5. Mesh generation and mesh independency test	63
5.6. Modeled case studies	64
5.7. Results of modelled case studies	65
5.7.1. Results of first case	65
5.7.2. Results of second case	70
5.7.3. Results of third case	73
5.7.4. Results of fourth case	77
5.8. Case study results analysis	81
5.8.1. First case results analysis	81
5.8.2. Second case results analysis	81
5.8.3. Third case results analysis	81

5.8.4. Fourth case results analysis	82
5.9. Financial study	82
5.9.1. Return on investment (ROI)	83
5.9.2. Payback period	84
5.9.3. Internal rate of return (IRR)	84
5.9.4. Internal rate of return (IRR) calculations	85
CHAPTER 6: CONCLUSIONS	87
6.1. Conclusions	87
6.2. Suggestions for future work	87
REFERENCES	88

List of Tables

Table 2.1: Temperature distribution for experimental measurements and CFD model, at	
heights from 0 to 220 cm.	.15
Table 4.1: Experimental inputs for CFD model	.37
Table 5.1: Interval size(mm) Vs. Number of cells	.63
Table 5.2: Average temperature distribution at different zones of first case	.69
Table 5.3: Average temperature distribution at different zones of second case	.73
Table 5.4: Average temperature distribution at different zones of third case	.77
Table 5.5: Average temperature distribution at different zones of fourth case	.81
Table 5.6: Cash inflows and outflows for a replacement configuration method	.83
Table 5.7: Initial cost and cash flows over 5 years	.85
Table 5.8: Calculating IRR by trial and error process	.86
Table 5.9: Calculating IRR and NPV by excel functions	.86

List of Figures

Figure 1.1: Data equipment power trends and heat loads	1
Figure 1.2: Data center thermal analysis chart	3
Figure 1.3: Traditional raised floor facility with an air flow cycle pattern	5
Figure 1.4: Hot aisle and cold aisle arrangement	7
Figure 1.5: Electronics board uses a buoyancy driven thermo-syphon	9
Figure 1.6: Range of overall heat transfer coefficients for different fluids and cooling modes	
Figure 1.7: Different manners for air cooled rack's cabinets	10
Figure 1.8: Liquid cooled cabinet to cabinet-level thermal solution liquid	11
Figure 1.9: Two main systems, employs air and water as an energy vector	12
Figure 1.10: Hot and cold aisle configuration for a data shelter room level cooling	13
Figure 2.1: Temperature contours at height of 200 cm for various rectifications	15
Figure 2.2: Three layouts of cold aisles	15
Figure 2.3: Types of datacenter air distribution systems	17
Figure 2.4: Layout of the experimental setup	18
Figure 2.5: Variation of (SHI & RHI) with data center power density for all studied cooling cases	18
Figure 2.6: Direct airside economizer	19
Figure 2.7: Experimental set up and test facility	20
Figure 2.8: Free water cooling system integrated with solar cooling cycle	21
Figure 3.1: Fluid element for conservation laws	23
Figure 3.2: Mass flows in and out of fluid element	24
Figure 3.3: Stress components on three faces of fluid element	25
Figure 3.4: Heat flux vector Components	28
Figure 4.1: Data center room experimental setup	36
Figure 4.2: Perforated tiles floor placed in front of rack	37
Figure 4.3: Experimental respective view of CFD model	38
Figure 4.4: CFD model geometry out line	39
Figure 4.5: A uniform rectangular mesh	40
Figure 4.6: Curvilinear mesh geometry bend by the 90°	41
Figure 4.7: A triangular mesh for the 90° bend geometry	42
Figure 4.8: View of the CFD model showing the temperature monitor points	43
Figure 4.9: Experimental data for temperature distributions at height of 0.5 feet	43