

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Enhancing Maintainability in Hospitals Systems Using BIM and Business Intelligence

By

Mahmoud Mustafa Hanafy Mahmoud

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **INTERDISCIPLINARY - MASTER OF SCIENCE**

Integrated Engineering Design in Construction Projects

Enhancing Maintainability in Hospitals Systems Using BIM and Business Intelligence

By

Mahmoud Mustafa Hanafy Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

INTERDISCIPLINARY - MASTER OF SCIENCE

in

Integrated Engineering Design in Construction Projects

Under the Supervision of

Prof. Mohamed Mahdy Marzouk

Professor of Construction Engineering and Management Structural Engineering Department Faculty of Engineering, Cairo University

Enhancing Maintainability in Hospitals Systems Using BIM and Business Intelligence

By

Mahmoud Mustafa Hanafy Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

INTERDISCIPLINARY - MASTER OF SCIENCE

ir

Integrated Engineering Design in Construction Projects

Approved by the Examining Committee

Prof. Mohamed Mahdy Marzouk

Thesis Main Advisor

Professor of Construction Engineering and Management – Structural Engineering Department – Cairo University

Prof. Ayman Ahmed Ezzat Othman

External Examiner

Professor of Construction Engineering and Management – Architectural Engineering Department – British University in Egypt

Dr. Mohamed Abdel-Latif Bakry

External Examiner

Former Head of Planning and Control – Social Fund for Development

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2021

Engineer's Name: Mahmoud Mustafa Hanafy Mahmoud

Date of Birth: 25 / 9 / 1992 **Nationality:** Egyptian

E-mail: <u>Mahmoud.m.hanafy@gmail.com</u>

Phone: 01008156962
Address: Nasr City, Cairo
Registration Date: 1 / 10 / 2017
Awarding Date: ... / ... / 2021

Degree: Interdisciplinary - Master of Science

Department: Integrated Engineering Design in Construction Projects

Supervisors:

Prof. Mohamed Mahdy Marzouk - Cairo University

Examiners:

Prof. Mohamed Mahdy Marzouk - Cairo University (Thesis main advisor)
Prof. Ayman Ahmed Ezzat Othman - British University in Egypt (External examiner)
Dr. Mohamed Abdel-Latif Bakkry - Social Fund for Development (External examiner)

Title of Thesis

Enhancing Maintainability in Hospitals Systems Using BIM and Business Intelligence

Key Words:

Hospital systems; Maintainability Assessment; Building Information Modeling (BIM); Business Intelligence (BI).

Summary:

Maintainability consideration is becoming one of the most demanding aspects in designing of healthcare facilities in recent years. Operation and maintenance costs represent almost 80% of the overall hospital's life cycle cost. Maintenance cost needs to be planned and managed carefully from the early design stages. To archive this objective, a framework is proposed in this research to collect the required data from all business parties. These data to build the Maintainability Information Database (MID) which contains all the maintainability information including six regular service systems of hospital buildings for better maintenance planning. This database is attached to the BIM models of the hospital for better collaboration. Also, a maintainability assessment is introduced based on pre-selected eight maintainability indices through an extensive literature review. Moreover, the AHP model is used to determine the relative weights of the maintainability indices. Then, an integrated system is introduced which combines a BIM-based tool developed by C# programming language and Revit API with a Business Intelligence (BI) dashboard developed using Microsoft Power BI to enhance the process of the maintainability assessment. The outputs are linked with a BI dashboard to analyze and visualize the data to aid in decision-making regarding maintainability planning.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mahmoud Mustafa Hanafy	Date:	/	/
Signature:			

Acknowledgments

All praises to Allah and His blessing for the completion of this thesis. I am thankful for all the opportunities, trials, and strength that have been showered on me to finish writing the thesis. I experienced so much during this process, not only from the academic aspect but also from the aspect of personality. My humblest gratitude to the Prophet Muhammad (Peace be upon him) whose way of life has been continuous guidance for me.

First and foremost, words cannot describe how I am extremely grateful to my supervisor, Prof. Mohamed Mahdy Marzouk for his invaluable advice, continuous support, patience, and understanding during my thesis steps. His immense knowledge and plentiful experience have encouraged me in all the time of my academic research and daily life. It has been a great pleasure and honor to have him as my supervisor.

I want to send my thanks to my friend Engineer Mohamed Mammduh for helping me in the registration process in the IEDM academic program, Also the BIM unit team members of Khatib & Alami - Nasr City office for providing encouragement and a warm spirit to finish this thesis. And special thanks to the geniuses; Architect Amira El-Saed and Engineer Hasan Tarek for their continuous assistance in the programming aspects to complete the development of the BIM-based tool.

I would sincerely like to thank my beloved parent for giving me literally everything they had selflessly during my entire life, Also, thanks to my beloved brothers and sister and my whole family members along with my beloved friends who were with me and support me through thick and thin.

Last but not least, Special Thanks to my beloved wife Aya for her continuous support and motivation, I am really blessed to have such a soul in my life, Due to my daughter birth, this thesis might have been finished 1 year earlier, but it won't be as mature as it is now. So, I dedicated this work to my beloved daughter Eman, wishing her and all the above mention people a life full of happiness and prosperity. May Allah bless them all.

Table of Contents

List of T	able	es	
List of F	`igur	es	viii
Abstract	t		x
Chapter	1 In	troduc	tion
	1.1	Gene	eral
	1.2	Prob	lem Statement
	1.3	Rese	arch Objectives
	1.4	Rese	arch Scope and Limitations
	1.5	Rese	arch Methodology
	1.6	Thes	is Organization
Chapter	2 Li	iteratur	re Review
	2.1	Gene	eral
	2.2	Asse	t Management vs. Facility Management 8
		2.2.1	Asset Management Applications
		2.2.2	Facility Management Applications
	2.3	Mair	ntenance vs Maintainability
		2.3.1	Maintenance Management Approaches
		2.3.2	Maintenance Related Research
		2.2.3	Maintainability Related Research
		2.2.4	Design for Maintainability
	2.4	Mair	ntainability Indices
		2.4.1	Accessibility
		2.4.2	Interchangeability
		2.4.3	Maintenance Time
		2.4.4	Maintenance Cost
		2.4.5	Maintenance Frequency
		2.4.6	Component Installation Cost
		2.4.7	Design Service Life
		2.4.8	Component Selection Requirements
	2.5		ding Information Modeling
		2.5.1	An Overview
		2.5.2	Building Information Modeling Process
		2.5.3	BIM Applications in Operation and Maintenance 31

	2.6	Bus	siness Intelligence
		2.6.1	Information Management
		2.6.2	Business Intelligence Applications
		2.6.3	Business Intelligence System Development
		2.6.4	Management Dashboard
		2.6.5	Business Intelligence System Implementation 37
	2.7	Inte	grated Project Delivery
		2.7.1	Project Delivery Methods
		2.7.2	Integrated Project Delivery Development
		2.7.3	Integrated Project Delivery Characteristics
	2.8	Mu	lti-Criteria Decision-Making Applications
	2.9	Sun	nmary and Research Gap42
Chapte	r 3 I	Hospital	ls Maintainability Framework
	3.1	Ger	neral
	3.2	Pro	posed Maintainability Framework
		3.2.1	Maintainability Information Database Structure 47
		3.2.2	Maintainability Data Responsibilities Matrix 49
		3.2.3	Maintainability Criteria Definition 50
		3.2.4	Maintainability Indices Baseline
		3.3.5	Analytical Hierarchy Process Model
		3.3.6	Maintainability Assessment
	3.3	Dev	veloping Hospital Maintainability Database
		3.3.1	Hospital Building Design Characteristics
		3.3.2	Maintainability Database for Hospitals' Building 53
		3.3.3	Maintainability Design Criteria for Systems Components 54
	3.4	Hos	spital Systems Maintainability Assessment Model 62
		3.4.1	Questionnaire Design and Pair-wise Matrix
		3.4.2	Respondents' Demographics Information 63
		3.4.3	AHP Calculation and Results Analysis 63
		3.4.4	Consistency Tests Results
		3.4.5	Maintainability Indices Weights Calculations
	3.5	Sun	nmary
Chapte	r 4	BIM an	d Business Intelligence Integration
	4.1	Ger	neral
	42	Des	zeloning RIM Tool 68

	4.2	2.1	Tool Description
	4.2	2.2	Tool Features
	4.2	2.3	BIM Models Requirements
	4.2	2.4	Rule-based Automation Algorithm
4	3	Devel	oping Business Intelligence Tool
	4.3	3.1	Maintainability Assessment Dashboard
	4.3	3.2	BIM Models Integration with BI
4.4	4	Summ	nary
Chapter 5	Mod	del Im _l	plementation90
5.	1	Gener	ral
5.2	2	Case S	Study Description
5	3	Case I	Inputs
5.4	4	BI Da	shboard Analysis
	5.4	4.1	Exporting Data to BI Internal Database
	5.4	4.2	Results Normalization
5.:	5	Maint	ainability Assessment Results' Discussion
	5.5	5.1	Electrical Systems Results
	5.5	5.2	Gas System Results
	5.5	5.3	HVAC System Results
	5.5	5.4	Water Supply System Results
	5.5	5.5	Drainage System Results
	5.5	5.6	Fire Protection System Results
	5.5	5.7	Final Assessment Score
	5.5	5.8	Results Sensitivity Analysis
5.0	6	Summ	nary
Chapter 6	Con	clusio	n and Recommendations 123
6.	1	Concl	usion
6.2	2	Resea	rch Contribution
6	3	Resea	rch Limitations
6.4	4	Resea	rch Recommendation
6.:	5	Recon	mmendation for Future Research
References	s		
Appendix	A: N	Iinim u	um Requirements of Components Maintainability 146

List of Tables

Table 3.1:	Maintainability Data Responsibility Matrix	49
Table 3.2:	Maintainability Indices Summary	50
Table 3.3:	Scales for Pair-Wise Comparison [193]	51
Table 3.4:	Random Index Values [179]	52
Table 3.5:	Maintainability Design Criteria for Electrical Components Accessibility	55
Table 3.6:	Maintainability Design Criteria for Electrical Components Selection	56
Table 3.7:	Maintainability Design Criteria for Gas Components Accessibility	56
Table 3.8:	Maintainability Design Criteria for Gas Components Selection	56
Table 3.9:	Maintainability Design Criteria for HVAC Components Accessibility	57
Table 3.10:	Maintainability Design Criteria for HVAC Components Selection	58
Table 3.11:	Maintainability Design Criteria for Water Supply Components	59
Table 3.12:	Maintainability Design Criteria for Water Supply Components Selection	59
Table 3.13:	Maintainability Design Criteria for Drainage Components Accessibility	60
Table 3.14:	Maintainability Design Criteria for Drainage Components Selection	60
Table 3.15:	Maintainability Design Criteria for Fire Protection Components	61
Table 3.16:	Maintainability Design Criteria for Fire Protection Components Selection	61
Table 3.17:	Demographics Information of the Respondents	63
Table 3.18:	Pairwise Comparison Matrix of Maintainability Indices	64
Table 3.19:	Normalized Pairwise Comparison Matrix of Maintainability Indices	64
Table 3.20:	Eigen Values of Pairwise Comparison Matrix of Maintainability Indices .	65
Table 3.21:	Checking Consistency Sample	65
Table 3.22:	Global Consistency Tests Results	66
Table 3.23:	Maintainability Indices Final Weights	66
Table 4.1:	Project Maintainability Parameters	71
Table 4.2:	Component Maintainability Parameters	72
Table 4.3:	BIM Models Level of Details Descriptions [247]	77
Table 5.1:	Normalization Techniques [253]	95
Table 5.2:	Average Values of Maintainability Indices for Electrical Components	96
Table 5.3:	Normalized values and Assessment Score Values of Maintainability Indices for Electrical Components	98
Table 5.4:	Average Values of Maintainability Indices	100
Table 5.5:	•	102
Table 5.6:	Average Values of Maintainability Indices for HVAC System Components	104

Table 5.7:	Normalized values and Assessment Score Values of Maintainability	106
	Indices for HVAC Components	
Table 5.8:	Average Values of Maintainability Indices	108
	for Water Supply System Components	
Table 5.9:	Normalized values and Assessment Score Values of Maintainability	110
	Indices for Water Supply Components	
Table 5.10:	Average Values of Maintainability Indices	112
	for Drainage System Components	
Table 5.11:	•	114
	Indices for Drainage Components	
Table 5.12:	Average Values of Maintainability Indices	116
	for Fire Protection Components	
Table 5.13:	Normalized values and Assessment Score Values of Maintainability	118
	Indices for Fire Protection Components	
Table A.1:	Electrical Systems Components Accessibility Requirements	146
Table A.2:	Electrical Systems Components Selection Requirements	148
Table A.3:	Gas System Components Accessibility Requirements	150
Table A.4:	Gas System Components Selection Requirements	150
Table A.5:	HVAC System Components Accessibility Requirements	151
Table A.6:	HVAC Systems Components Selection Requirements	153
Table A.7:	Water Supply System Components Accessibility Requirements	155
Table A.8:	Water Supply System Components Selection Requirements	156
Table A.9:	Drainage System Components Accessibility Requirements	157
Table A.10:	Drainage Systems Components Selection Requirements	158
Table A.11:	Fire Protection System Components Accessibility Requirements	160
Table A.12:	Fire Protection System Components Selection Requirements	161

List of Figures

Figure 1.1:	Proposed Research Methodology	5
Figure 2.1:	Life-Cycle Cost Analysis of Construction Projects [46]	13
Figure 2.2:	Building Information Modeling Process Workflow [134]	30
Figure 2.3:	Generic form of Business Intelligence Process [148]	33
Figure 2.4:	The Core Architecture of Business Intelligence Systems [148]	36
Figure 2.5:	Business Intelligence Implementation Steps [148]	37
Figure 3.1:	Proposed Maintainability Planning Framework	45
Figure 3.2:	Maintainability Framework Process Sequence	47
Figure 3.3:	Maintainability Information Database Hierarchy Structure	48
Figure 3.4:	Procedure for Building the Maintainability Information Database for Hospitals	53
Figure 3.5:	Hospital Building Systems Components Classification	54
Figure 3.6:	The Questionnaire Survey Design	62
Figure 4.1:	Most used Design Tools [244]	68
Figure 4.2:	The Tool Ribbon from the Revit Session	69
Figure 4.3:	Project Maintainability Parameters	70
Figure 4.4:	Component Maintainability Parameters	71
Figure 4.5:	Accessibility Failed Elements 3D Separated Views	74
Figure 4.5:	Accessibility Failed Elements Schedule	75
Figure 4.7:	Selection Failed Elements Schedules	76
Figure 4.8:	BIM Model Previews with Different Level of Details	78
Figure 4.9:	Rule-based Automation Algorithm	80
Figure 4.10:	Hospital's Systems Maintainability Assessment Dashboard	82
Figure 4.11:	Hospital's Systems Maintainability Information	84
Figure 4.12:	Systems Elements Accessibility Information Data	85
Figure 4.13:	Systems Elements Selection Properties Information Data	86
Figure 4.14	The BI Dashboard Internal Database Tables	88
Figure 6.1:	Abu-Dhabi Medical Rehabilitation Center 3D Perspective	91
Figure 6.2:	BIM Models Segregations for The Case Study	92
Figure 6.3:	The BI Dashboard Internal Database Tables for The Case Study	93
Figure 6.4:	Maintainability Indices results for Electrical Systems	97
Figure 6.5:	Maintainability Assessment Scores for Electrical Systems	99
Figure 6.6:	Maintainability Indices results for Gas System	101
Figure 6.7:	Maintainability Assessment Scores for Gas System	103
Figure 6.8:	Maintainability Indices results for HVAC System	105