

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY





# DESIGN AND DEVELOPMENT OF ENERGY HARVESTING DEVICES FOR INTELLIGENT SYSTEMS

By

#### Mai Mahmoud Abdel-Aziz Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

**Electrical Power and Machines Engineering** 

# DESIGN AND DEVELOPMENT OF ENERGY HARVESTING DEVICES FOR INTELLIGENT SYSTEMS

#### By Mai Mahmoud Abdel-Aziz Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

**Electrical Power and Machines Engineering** 

Under the Supervision of

**Prof. Khaled Ali El-Metwally** 

Assoc. Prof. Abdelmomen usama mahgoub

Professor
Electrical Power Engineering
Faculty of Engineering, Cairo University

Associate Professor Electrical Power Engineering Faculty of Engineering, Cairo University

# DESIGN AND DEVELOPMENT OF ENERGY HARVESTING DEVICES FOR INTELLIGENT SYSTEMS

## By **Mai Mahmoud Abdel-Aziz Mohamed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

**Electrical Power and Machines Engineering** 

Approved by the

| Examining Committee                                          |                     |
|--------------------------------------------------------------|---------------------|
| Prof. Dr. Khaled Ali Elmetwally                              | Thesis Main Advisor |
| Assoc. Prof. Abdelmomen Usama Mahgoub                        | Advisor             |
| Prof. Abdul Latif Muhammad Al Shafei                         | Internal Examiner   |
| Prof. Dr. Ahmed Abd-elsatar Abd-elfatah Ain shams university | External Examiner   |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Mai Mahmoud Abd El-Aziz Mohamed

**Date of Birth:** 08/02/1993 **Nationality:** Egyptian

**E-mail:** maimahmoud721993@gmail.com

Phone 01095927447
Address: Ismailia, Egypt
Registration Date: 01/10/2016
Awarding Date: / /2021

**Degree:** Master of Science

**Department:** Electrical Power and Machines Engineering

**Supervisors:** 

Prof. Khaled Ali El Metwally

Assoc. Prof. Abdelmomen Usama Mahgoub

**Examiners:** Prof. Khaled Ali El Metwally (Thesis main advisor)

Assoc. Prof. Abdelmomen Usama Mahgoub
Prof. Dr. Abdul Latif Muhammad Al Shafe
Prof. Dr. Ahmed Abdul Sattar Abdel Fattah
(External examiner)

(Faculty of Engineering, Ain-Shams University)

#### **Title of Thesis:**

### DESIGN AND DEVELOPMENT OF ENERGY HARVESTING DEVICES FOR INTELLIGENT SYSTEMS

#### **Key Words:**

Energy harvesters; piezoelectric; vibrations; power management system; power electronics circuits.

#### **Summary:**

The wireless sensor nets (WSNs) have an effective and efficient for Condition monitoring. Batteries are vital sources in many WSNs applications. But it poses a lot of problems. Energy harvesting can be an attractive solution. Piezoelectric energy harvesters (PEHs) used in this thesis which have different advantages. The integrated circuit (ICs), which supply the sensors, have been limited for low output power applications under 1 Watt. So, a proposed converter has attracted this issue of convert microwatt or milliwatt level power from the environment. It presented as a single-stage ac to dc converter, which is based on power factor correction (PFC) topology. Where the harvested energy is 300  $\mu W$ , it has seen that a total power loss of the proposed system is 102.05  $\mu W$ . So, the proposed topology proves to be superior over other techniques and suitable for low micro watt power applications.



### **Disclaimer**

I herewith declare that this thesis is my original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

| Name: Mai Mahmoud Abd El-Aziz Mohamed | Data: |
|---------------------------------------|-------|
| Signature:                            |       |

#### Acknowledgments

Firstly, I would like to thank God for everything. Without his help and blessing, I would not have been able to finish this work. Then, I wish to express my sincere gratitude to my supervisor Prof. Khaled El-Metwally, and Assoc. Prof. Abdelmomen Mahgoub for encouraging me and introduced guidance and unlimited support to me during my work. Their patience and kindness are greatly appreciated.

I would also like to thank my husband Ahmed for making our home the best place for my study. His care and understanding go way beyond the norm when I needed them the most, and I am forever grateful. If not for him, I would never have been able to finish this thesis. Also, special thanks to my son Hamza for motivating me to finish my thesis. This thesis belongs to them as much as it does to me. Also, my parents, Mahmoud and Lobna, provided much guidance and moral support during my educational career and allowed me to reach where I am today. Their prayers gave me strength and helped me overcome all the challenges at school and in life.

### **Table of contents**

| Disclaimer                                                  | i   |
|-------------------------------------------------------------|-----|
| Acknowledgments                                             | ii  |
| Table of contents                                           | iii |
| List of Tables                                              | vi  |
| List of Figures                                             | vii |
| List of Symbols and Abbreviations                           | ix  |
| Abstract                                                    | x   |
| 1.Chapter One                                               | 1   |
| Introduction                                                | 1   |
| Objective formulation                                       | 2   |
| Background                                                  | 2   |
| 1.1 Energy Harvesting (EH)                                  | 3   |
| 1.2 Mechanical Harvester System                             | 4   |
| 1.3 The Harvester Conversion Process                        | 5   |
| 1.3.1 Electromagnetic Energy Harvesting                     | 5   |
| 1.3.2 Electrostatic Energy Harvesting (EH)                  | 6   |
| 1.3.3 Magnetostrictive (MS) Energy Harvesting               | 7   |
| 1.4 Piezoelectric Energy Harvesting                         | 9   |
| 1.4.1 Piezoelectricity                                      | 9   |
| 1.4.2 Piezoelectric Materials                               | 10  |
| 1.4.3 Piezoelectric Parameters and modeling                 | 10  |
| 1.4.4 Piezoelectric EH devices                              | 12  |
| 1.4.5 Different technical issues regarding PEH              | 14  |
| 1.4.5.1 Power spectrum of PEH                               | 14  |
| 1.4.5.2 Determination of tuning methods                     | 16  |
| 1.4.5.3 Enhancement of Resonant Bandwidth                   | 17  |
| 1.4.5.4 Tuning of Resonant Frequency                        | 18  |
| Mechanical tuning methods                                   | 18  |
| Electrical tuning methods                                   | 19  |
| 1.5 Organization of the thesis                              | 20  |
| 2.Chapter two                                               | 21  |
| Fully Coupled Electrical and Mechanical Model               | 21  |
| 2.1 Spring-mass-damper Model (SMD)                          | 21  |
| 2.2 Equivalent Circuit Model of PE Harvester                | 24  |
| 2.2.1 Piezoelectric Harvester Parasitic Capacitance         | 24  |
| 2.2.2 Equivalent Circuit Model of PE Harvester              | 25  |
| 2.3 Maximum power delivery through impedance matching       | 27  |
| 2.3.1 Tuning Harvester exhibiting Single-Resonant Frequency | 27  |
| 2.3.2 Multi-resonant Frequency                              | 29  |
| 2.4 Chapter Summary                                         | 32  |
| 3. Chapter Three                                            | 33  |

|    | Piezoelectric Harvester Characterization and Testbench Construction | .33 |
|----|---------------------------------------------------------------------|-----|
|    | 3.1 Characterization of Open Circuit Voltage                        | .33 |
|    | 3.2 Spice Implementation                                            | .34 |
|    | 3.3 Emulation of Piezoelectric Harvester                            |     |
|    | Piezo-electric emulation SPICE model                                | 36  |
|    | The Results:                                                        | 39  |
| 4. | Chapter Four                                                        | .41 |
|    | Development of Power Electronics for PEHs                           | .41 |
|    | 4.1 System configuration                                            |     |
|    | 4.1.1 Input Interface circuit                                       | 41  |
|    | Full-wave Rectifier                                                 |     |
|    | Voltage Doubler (VD)                                                | 42  |
|    | 4.1.2 Interface circuits 2                                          | 43  |
|    | 4.1.3 Single stage topology                                         |     |
|    | 4.2 System Architecture using H-Bridge                              | .47 |
|    | 4.2.1 Control Circuit                                               |     |
|    | 4.2.2 Simulation results                                            | 48  |
|    | 4.2.3 Efficiency evaluation                                         |     |
|    | Control path losses                                                 | 50  |
|    | Power circuit losses:                                               | 52  |
|    | The inductor                                                        |     |
|    | The MOSFET                                                          | 53  |
|    | 4.2.4 Digital Control For H-Bridge Architecture                     |     |
|    | Simulation of digital control approach                              | 54  |
|    | Efficiency evaluation of the digital control approach               |     |
|    | 4.3 System Architecture using new power stage                       | .59 |
|    | 4.3.1 Control Circuit                                               | 61  |
|    | 4.3.2 Simulation results                                            |     |
|    | 4.3.3 Efficiency Evaluation                                         |     |
|    | Control path losses                                                 | 63  |
|    | Power circuit losses                                                | 64  |
|    | The inductor                                                        | 64  |
|    | The MOSFET                                                          | 64  |
|    | The capacitor                                                       | 65  |
|    | The diode                                                           | 67  |
|    | 4.4 Chapter Summary                                                 | .68 |
| 5. | Chapter Five                                                        |     |
|    | Summary, Conclusion, and Future Work                                | .69 |
|    | 5.1 Objectives of thesis and Achievements                           | 69  |
|    | 5.2 Summary and Conclusions                                         | 69  |
|    | 5.3 Future Improvements                                             | 70  |
| Bi | bliography                                                          | .71 |
| Αį | pendix A                                                            | .78 |
|    | Code Scripts                                                        | 78  |

| A.1 Harvester Impedance Matching | 78 |
|----------------------------------|----|
| A.1.1 Single Resonance Tuning    |    |
| A.1.2 Dual-resonance Tuning      |    |
| A.1.3 Triple-resonance Tuning    | 79 |

### **List of Tables**

| Table 1-1: Comparison of harvesting power and forms of energy[7] | 3  |
|------------------------------------------------------------------|----|
| Table 1-2: Piezoelectric parameters [1]                          | 10 |
| Table 2-1: PE harvester parameter                                | 28 |
| Table 3-1: Piezoelectric harvester parameter                     | 34 |
| Table 4-1: power losses comparison                               | 68 |

### **List of Figures**

| Figure 1-1: Vibration , solar and battery power comparison [16]                 | 3  |
|---------------------------------------------------------------------------------|----|
| Figure 1-2: Vibration source via EH system                                      | 4  |
| Figure 1-3: The two classes of mechanical structure [25]                        | 4  |
| Figure 1-4: Mechanical schematic of EM energy harvester [27]                    | 5  |
| Figure 1-5: The flow of energy inside an MS energy harvester                    | 8  |
| Figure 1-6: Magnetic domain rotation in magnetostrictive materials [44]         | 8  |
| Figure 1-7: Direct Piezoelectric Effect [47]                                    | 9  |
| Figure 1-8: Direct Piezoelectric Effect Compression and Expansion [48]          | 9  |
| Figure 1-9: The PEH's side view                                                 | 11 |
| Figure 1-10: The PE's electromechanical model                                   | 11 |
| Figure 1-11: Windmill-styles PEHs                                               | 13 |
| Figure 1-12: PEH devices of water flow                                          | 14 |
| Figure 1-13: PEH devices of human movement                                      | 14 |
| Figure 1-14: Generic type of micro-generator based on vibrations                | 15 |
| Figure 1-15: Power spectrum with various damping factors and Q-factor[66]       | 16 |
| Figure 1-16: A generator array's power spectrum [67]                            | 17 |
| Figure 1-17: Tunable load and fixed load Power Spectrum                         | 19 |
| Figure 2-1: Spring-mass-damper model                                            | 21 |
| Figure 2-2: Electrically tuned load                                             | 22 |
| Figure 2-3: Equivalent circuit of PEH loaded with a generalized impedance       | 24 |
| Figure 2-4: Shifting of Wr through reactive components                          | 29 |
| Figure 2-5: Equivalent circuit of a dual-resonance VEH                          | 29 |
| Figure 2-6: LC's dual resonance character powered harvester                     | 30 |
| Figure 2-7: Equivalent circuit of a triple-resonance VEH                        | 31 |
| Figure 2-8: N-resonance VEH equivalent circuit                                  | 31 |
| Figure 3-1: Piezoelectric harvester equivalent circuit model                    | 34 |
| Figure 3-2: Piezoelectric generator electromechanical circuit model             | 35 |
| Figure 3-3: PEH equivalent circuit model implemented in LTSpice                 | 36 |
| Figure 3-4: Piezo-electric emulation spice model                                | 37 |
| Figure 3-5: The load voltage of piezo-electric model versus different frequency | 38 |
| Figure 3-6:The load voltage of piezo-electric model versus different frequency  | 38 |
| Figure 3-7: Practical model of piezo-electric harvester                         | 39 |
| Figure 3-8: load voltage of piezo-electric model                                | 39 |
| Figure 4-1: The general structure of the power conversion chain                 | 41 |
| Figure 4-2: Full-Bridge Rectifier Circuit [48]                                  | 42 |
| Figure 4-3: Voltage Doubler Circuit                                             | 43 |
| Figure 4-4: EH circuit using TPS71501 adjustable output voltage regulator       | 44 |

| Figure 4-6: DC-DC boost converter in two-stage energy harvesting scheme        | .45 |
|--------------------------------------------------------------------------------|-----|
| Figure 4-7: Rectifier with buck hoost converter                                |     |
| Tigare + 7. Rectiner with back boost converter                                 |     |
| Figure 4-8: Block diagrams of power stage                                      | .46 |
| Figure 4-9: A dual polarity boost converter                                    | .46 |
| Figure 4-10: Direct AC/DC Power Conversion                                     | .47 |
| Figure 4-11: H-Bridge topology with associated control and driving             | .48 |
| Figure 4-12:Simulation model of the converter with control and harvester model | .49 |
| Figure 4-13: Output waveforms for load voltage and current of a 9 $k\Omega$    | .49 |
| Figure 4-14: The older analog control logic circuit                            | .50 |
| Figure 4-15: The datasheet of LTC1050                                          | .51 |
| Figure 4-16: The datasheet of LT1711                                           | .51 |
| Figure 4-17: The datasheet of LTC4446 gate driver                              | .52 |
| Figure 4-18: The datasheet of RL1123                                           | .53 |
| Figure 4-19: The datasheet of FDV301N digital nMOS                             | .54 |
| Figure 4-20: Circuit diagram with Atmega32                                     | .55 |
| Figure 4-21: ATmega32                                                          | .55 |
| Figure 4-22: The AVR code                                                      | .56 |
| Figure 4-23: Results of AVR's output                                           | .56 |
| Figure 4-24: Two types of ARDUINO UNO R3                                       | .57 |
| Figure 4-25: ATmega32 datasheet                                                | .57 |
| Figure 4-26: The datasheet of TLV3691                                          | .58 |
| Figure 4-27: MSP4301 shape and manufacturing details                           | .59 |
| Figure 4-28: MSP4301 datasheet                                                 | .59 |
| Figure 4-29: The presented MEPT converter                                      | .60 |
| Figure 4-30: The operation modes for the MEPT topology                         | .61 |
| Figure 4-31: Control circuit Schematic                                         | .61 |
| Figure 4-32: New system architecture                                           | .62 |
| Figure 4-33: The load voltage, load current and switching wave forms           | .62 |
| Figure 4-34: The newer analog control logic circuit                            | .63 |
| Figure 4-35: The datasheet of TLV3691                                          | .63 |
| Figure 4-36: The datasheet of RL1325                                           | .64 |
| Figure 4-37: The datasheet of DMN3190LDW MOSFET                                | .65 |
| Figure 4-38: Capacitor type C1812X103K5RACTU                                   | .66 |
| Figure 4-39: The attributes of capacitor type C1812X103K5RACTU                 | .66 |
| Figure 4-40: The datasheet of diode type PMEG2005ET                            | .67 |