

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Water Sorption of Light Cured Resin Cement: The Effect of Ceramic Material and Thickness.

Thesis

Submitted to Faculty of Dentistry, Ain Shams University
In Partial Fulfillment of the Requirements for master's degree
in

Fixed Prosthodontics

By **Ahmed Maher Sayed**

B.D.S. - Ain Shams University, (2013)

Faculty of Dentistry Ain shams university

SUPERVISORS

Dr.Marwa Mohamed Wahsh

Professor of Fixed Prosthodontics Faculty of Dentistry Ain Shams University

Dr.Maged Mohamed Zohdy

Associate Professor of Fixed Prosthodontics Faculty of Dentistry Ain Shams University

ACKNOWLEDGMENT

First, thanks to Allah, to whom I relate any success.

I would like to express my deepest gratitude & Appreciation to my dearest **Dr. MarwaWahsh**, Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for her precious effort, meticulous advice, and her valuable comments.

I would like also to express my heartful thanks and sincere gratitude to **Dr. MagedZohdy**, Associate Professor of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for his priceless help, for his time & effort, his support & guidance, and for his continuous cooperation to complete this work.

Also, I am highly grateful to all staff members at Fixed Prosthodontics Department at Faculty of Dentistry Ain Shams University for their great support for me to finish my Master's Degree at the department.

Finally, I must express my very profound gratitude to my family for their support and continuous encouragement.

Ahmed Maher Sayed

LIST OF CONTENTS

	Page
LIST OF TABLES	II
LIST OF FIGURES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF PROBLEM	33
AIM OF THE STUDY	34
MATERIALS AND METHODS	35
RESULTS	55
DISCUSSION	64
SUMMARY	72
CONCLUSION	75
CLINICAL Significance	76
REFERENCES	77
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Title	Page
1	Materials used in this study	35
2	Chemical composition of IPS Emax CAD blocks	36
3	Mechanical properties of IPS Emax CAD blocks	37
4	Chemical composition of Vita Enamic	38
5	Mechanical properties of Vita Enamic	39
6	Chemical composition of Cerasmart	40
7	Technical data of Cerasmart	40
8	Chemical composition of RelyX veneer one paste light- cured system	42
9	Sample grouping	43
10	Crystallization cycle of IPS e.max CAD	45
11	Descriptive statistics for water sorption (%) of different groups	56
12	Effect of different variables and their interactions on water sorption	57
13	Mean ± standard deviation (SD) of water sorption (%) for different materials	58
14	Mean ± standard deviation (SD) of water sorption (%) for different thicknesses	60
15	Mean ± standard deviation (SD) of water sorption (%) for different materials and thicknesses	62

LIST OF FIGURES

Fig. No.	Title	Page
1	IPS e-max CAD blocks	36
2	Vita Enamic blocks	37
3	Cerasmart blocks	39
4	3m RelyX Veneer Cement	41
5	Buehler Isomet diamond saw 4000	44
6	Cutting the samples using Isomet saw	44
7	Digital caliper showing thickness 0.4mm & 1mm respectively	44
8	crystallization cycle of lithium disilicate	45
9	Teflon mould showing the internal stop	46
10	Teflon moulds of Two different thicknesses	46
11	Diagrammatic representation of the resin/ceramic sample preparation	47
12	Resin cement dispensed on disc.	48
13	Mylar strips (Alsip; GC America Inc.) were placed individually on the upper surface of each sample to ensure an even and smooth cement surface	48

Fig.	Title	Page
14	Light curing of the resin cement through the ceramic slice.	49
15	Resin cement specimens after separation from the mould	50
16	Verification of thickness of resin cement specimen by HOLEX digital caliper	50
17	Dark container for cement specimens.	51
18	Dessicator containing the fresh blue silica gel.	51
19	Dessicator placed in an incubator at 37°C.	52
20	reighting samples using an analytical balance of accuracy 001g.	52
21	30 ml glass sealed containers.	53
22	Each sample was placed in a separate glass sealed container containing 10 ml distilled water in an incubator at 37°C.	53
23	Box plot showing water sorption (%) values for different group	56
24	Bar chart showing average water sorption (%) for different materials	59
25	Bar chart showing average water sorption (%) for different thicknesses	60
26	Bar chart showing average water sorption (%) for different materials and thicknesses (A)	63
27	Bar chart showing average water sorption (%) for different materials and thicknesses (B)	63