

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



Faculty of Women for Arts, Science and Education Ain Shams University

## PHYSICO-CHEMICAL, MECHANICAL AND MICROSTRUCTURE OF SOME ALKALI ACTIVATED INDUSTRIAL SOLID WASTES

#### **A Thesis**

submitted to the Chemistry Department,
Women's Faculty, Ain Shams University.
In partial Fulfillment of the Requirements for Ph.D
Degree of Science (Inorganic and analytical Chemistry)

## Presented by Basma Sobhy Ibrahim Melygy

#### Supervised by

#### Prof. Dr. Essam Abd elaziz Kishar

professor of Inorganic Chemistry Women's Faculty, Ain Shams University, Cairo-Egypt

#### Prof. Dr. Mohamed Ahmed Hassan Heikal

Prof. of Inorganic Chemistry
Chemistry Department
Faculty of Science - Banha University

#### Dr. Shereen Awad AbdElkadar

Prof Assistance of Engineeing chemistry Faculty of Engineering - Benha University

(2021)



Faculty of Women for Arts, Science and Education Ain Shams University

## PHYSICO-CHEMICAL, MECHANICAL AND MICROSTRUCTURE OF SOME ALKALI ACTIVATED INDUSTRIAL SOLID WASTES

# Presented by Basma Sobhy Ibrahim Melygy

### Supervised by

Prof. Dr. Essam Abd elaziz Kishar professor of Inorganic Chemistry Women's Faculty, Ain Shams University, Cairo-Egypt

#### Prof. Dr. Mohamed Ahmed Hassan Heikal

Prof. of Inorganic Chemistry
Chemistry Department
Faculty of Science - Banha University

#### Dr. Shereen Awad AbdElkadar

Prof Assistance of Engineeing chemistry Faculty of Engineering - Benha University

(2021)



Faculty of Women for Arts, Science and Education Ain Shams University

Student name: Basma Sobhy Ibrahim Melygy

Thesis title: "Physico-Chemical, Mechanical And Microstructure
Of Some Alkali Activated Industrial Solid Wastes"

**Degree : Ph.D Degree of Science (Inorganic and analytical Chemistry)** 

### Approved by

| Prof. Dr. Eissa El-Sayed Heikal                                                          |
|------------------------------------------------------------------------------------------|
| Professor of Naturl Chemistry Faculty of Science, Ain shams university.                  |
| Prof. Dr. Tarek Mostafa El-Sokary                                                        |
| Professor of Inorganic Chemistry, Housing and Building Research Institute                |
| Prof. Dr. Essam Abd elaziz Kishar :                                                      |
| Professor of Inorganic Chemistry, women faculty, Ain shams university.                   |
| Prof. Dr. Mohamed Ahmed Hassan Heikal:                                                   |
| Prof. of Inorganic Chemistry, Chemistry Department, Faculty of Science, Banha University |
| Dr. Shereen Awad AbdElkadar:                                                             |
| Prof Assistance of Engineeing chemistry, Faculty of Engineering - Benha University       |
|                                                                                          |

**Head of Chemistry Department** 



Faculty of Women for Arts,

**Science and Education** 

**Ain Shams University** 

Cairo, Egypt.

Student Name : Basma Sobhy Ibrahim Melygy

Scientific Degree: M. Sc. (Chemistry)

**Department** : Chemistry

Name of Faculty: Faculty of Women

**University** : Ain Shams University

M.Sc. Graduation Date: 2015

### Acknowledgment

I am deeply thankful to ALLAH, lord of the worlds for showing me the right path and helping me to complete this work by the grace of whom, most beneficent and most merciful.

I would like to take the opportunity to express my deepest respect sincere, and appreciation to **Prof. Dr. Mohamed Ahmed Hassan Heikal,** Prof. of Inorganic Chemistry, Faculty of Science, Benha University for his supervision, suggesting the research problem, useful guidance, fruitful discussion in continues seminars, encouragement and criticism when needed, and the facilities he offered me throughout the progress of the work till finishing it.

It is an honor for me to thank and express my deepest gratitude to **Prof. Dr. Essam Abd El-Aziz Kishar** Prof. of Inorganic Chemistry, Faculty of Girls, Ain Shams University, for his supervision, suggesting the research problem, encouragement, fruitful discussion and the facilities he offered me throughout the progress of this work.

Deep thanks to **Dr. Shereen Awad AbdElkader**, Assist. Prof. of Engineering Chemistry, Faculty of Engineering, Benha University, for her supervision, kindness and encouragement during this work.

My thanks extend also to my Family, the staff members and my colleagues at Faculty of science, Benha University for their cooperation and encouragement during this work.

Candidate Basma Sobhy Ibrahim

| Subject                                  |                                                      | Page |  |
|------------------------------------------|------------------------------------------------------|------|--|
|                                          | <u>CHAPTER I</u>                                     |      |  |
|                                          | 1-INTRODUCTION                                       |      |  |
| 1.1                                      | Introductory Remarks                                 | 1    |  |
| 1.2                                      | Geopolymerization                                    | 4    |  |
| 1.3                                      | Effect of temperature on cementitious and geopolymer | 7    |  |
|                                          | binders                                              |      |  |
| 1.4                                      | Aggressive chemical attack                           | 8    |  |
| 1.4.1                                    | Sulphate attack                                      | 8    |  |
| 1.4.2                                    | Chloride attack                                      | 9    |  |
|                                          | CHAPTER II                                           |      |  |
| <u>2-</u>                                | LITERATURE REVIEW                                    |      |  |
| 2.1                                      | Alkaline activators                                  | 11   |  |
| 2.1.1                                    | Alkali hydroxides                                    | 12   |  |
| 2.1.2                                    | Alkali silicates                                     | 12   |  |
| 2.1.3                                    | Granulated blast-furnace slag (GBFS)                 | 13   |  |
| 2.1.4                                    | Alkali Activated Fly-Ash (FA)                        | 18   |  |
| 2.1.5                                    | Alkali Activated ground clay bricks(GCB)             | 20   |  |
| 2.2                                      | Effect of elevated temperature on alkali activated   | 21   |  |
|                                          | binders                                              |      |  |
| 2.3                                      | 2.3. Aggressive chemical Attack                      | 24   |  |
| The Objective of the Present Work        |                                                      |      |  |
|                                          | CHAPTER III                                          |      |  |
| 3-MATERIALS AND METHODS OF INVESTIGATION |                                                      |      |  |
| 3.1                                      | Starting materials                                   | 27   |  |
| 3.1.1                                    | Granulated blast-furnace slag (GBFS)                 | 27   |  |
| 3.1.2                                    | Fly Ash                                              | 28   |  |
| 3.1.3                                    | Ground clay brick waste                              | 30   |  |
| 3.1.4                                    | Sodium silicate solution and sodium hydroxide        | 30   |  |

| 3.2                                                                              | Experimental and techniques                                                                                                                                                                                                                                                                                                                                             | 31                                           |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 3.2.1                                                                            | Preparation of dry mixes                                                                                                                                                                                                                                                                                                                                                | 31                                           |
| 3.2.2                                                                            | Mixing                                                                                                                                                                                                                                                                                                                                                                  | 32                                           |
| 3.2.3                                                                            | Curing                                                                                                                                                                                                                                                                                                                                                                  | 32                                           |
| 3.3                                                                              | Methods of investigation                                                                                                                                                                                                                                                                                                                                                | 33                                           |
| 3.3.1                                                                            | Bulk density measurements                                                                                                                                                                                                                                                                                                                                               | 33                                           |
| 3.3.2                                                                            | Total porosity measurement                                                                                                                                                                                                                                                                                                                                              | 33                                           |
| 3.3.3                                                                            | Compressive strength measurements                                                                                                                                                                                                                                                                                                                                       | 34                                           |
| 3.3.4                                                                            | Stopping of the hydration                                                                                                                                                                                                                                                                                                                                               | 34                                           |
| 3.3.5                                                                            | Determination of combined water                                                                                                                                                                                                                                                                                                                                         | 34                                           |
| 3.3.6                                                                            | Determination of free slag                                                                                                                                                                                                                                                                                                                                              | 35                                           |
| 3.3.7                                                                            | Determination of total sulphate contents                                                                                                                                                                                                                                                                                                                                | 35                                           |
| 3.3.8                                                                            | Determination of total chloride contents                                                                                                                                                                                                                                                                                                                                | 36                                           |
| 3.3.9                                                                            | X-ray diffraction (XRD)                                                                                                                                                                                                                                                                                                                                                 | 36                                           |
| 3.3.10                                                                           | Scanning electron microscope (SEM)                                                                                                                                                                                                                                                                                                                                      | 37                                           |
| CHAPTER IV  4-PESULTS AND DISSCUSION                                             |                                                                                                                                                                                                                                                                                                                                                                         |                                              |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                         |                                              |
|                                                                                  | <u>CHAPTER IV</u><br>4-RESULTS AND DISSCUSION                                                                                                                                                                                                                                                                                                                           |                                              |
| 4.1                                                                              |                                                                                                                                                                                                                                                                                                                                                                         | 38                                           |
| 4.1<br>4.1.1                                                                     | 4-RESULTS AND DISSCUSION                                                                                                                                                                                                                                                                                                                                                | 38 38                                        |
|                                                                                  | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders                                                                                                                                                                                                                                                                                               |                                              |
| 4.1.1                                                                            | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders                                                                                                                                                                                                                                           | 38                                           |
| 4.1.1                                                                            | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength                                                                                                                                                                                                                      | 38                                           |
| 4.1.1<br>4.1.1.1<br>4.1.1.2                                                      | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength Chemically combined water contents                                                                                                                                                                                   | 38<br>38<br>40                               |
| 4.1.1<br>4.1.1.1<br>4.1.1.2<br>4.1.1.3                                           | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength Chemically combined water contents Combined slag contents                                                                                                                                                            | 38<br>38<br>40<br>41                         |
| 4.1.1<br>4.1.1.1<br>4.1.1.2<br>4.1.1.3<br>4.1.1.4                                | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength Chemically combined water contents Combined slag contents Bulk density and total porosity X-ray diffraction Scanning electron microscopy                                                                             | 38<br>38<br>40<br>41<br>42                   |
| 4.1.1<br>4.1.1.2<br>4.1.1.3<br>4.1.1.4<br>4.1.1.5                                | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders  Compressive strength Chemically combined water contents Combined slag contents Bulk density and total porosity X-ray diffraction                                                                                                         | 38<br>38<br>40<br>41<br>42<br>44             |
| 4.1.1<br>4.1.1.2<br>4.1.1.3<br>4.1.1.4<br>4.1.1.5<br>4.1.1.6                     | Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength Chemically combined water contents Combined slag contents Bulk density and total porosity X-ray diffraction Scanning electron microscopy Hydration characteristic of GBFS-FA geopolymer                                                        | 38<br>38<br>40<br>41<br>42<br>44<br>46       |
| 4.1.1<br>4.1.1.2<br>4.1.1.3<br>4.1.1.4<br>4.1.1.5<br>4.1.1.6<br>4.1.2            | Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength Chemically combined water contents Combined slag contents Bulk density and total porosity X-ray diffraction Scanning electron microscopy Hydration characteristic of GBFS-FA geopolymer binders                                                | 38<br>38<br>40<br>41<br>42<br>44<br>46<br>49 |
| 4.1.1<br>4.1.1.1<br>4.1.1.2<br>4.1.1.3<br>4.1.1.4<br>4.1.1.5<br>4.1.1.6<br>4.1.2 | 4-RESULTS AND DISSCUSION  Hydration characteristics of geopolymer binders Hydration characteristic of slag geopolymer binders Compressive strength Chemically combined water contents Combined slag contents Bulk density and total porosity X-ray diffraction Scanning electron microscopy Hydration characteristic of GBFS-FA geopolymer binders Compressive strength | 38<br>38<br>40<br>41<br>42<br>44<br>46<br>49 |

| 4.1.2.5 | X-ray diffraction                                        | 56  |
|---------|----------------------------------------------------------|-----|
| 4.1.2.6 | Scanning electron microscopy                             | 58  |
| 4.1.3   | Substitution of GBFS with GCB                            | 61  |
| 4.1.3.1 | Compressive strength                                     | 61  |
| 4.1.3.2 | Chemically combined water contents                       | 63  |
| 4.1.3.3 | Combined slag contents                                   | 65  |
| 4.1.3.4 | Bulk density and total porosity                          | 66  |
| 4.1.3.5 | X-ray diffraction                                        | 69  |
| 4.1.3.6 | Scanning electron microscopy                             | 71  |
| 4.1.4   | Hydration characteristic of GCB-FA geopolymer            | 73  |
| 4141    | binders                                                  | 70  |
| 4.1.4.1 | Compressive strength                                     | 73  |
| 4.1.4.2 | Chemically combined water contents                       | 75  |
| 4.1.4.3 | Combined slag contents                                   | 77  |
| 4.1.4.4 | Bulk density and total porosity                          | 78  |
| 4.1.4.5 | X-ray diffraction                                        | 80  |
| 4.1.4.6 | Scanning electron microscopy                             | 82  |
| 4.1.5   | Physico-chemical and mechanical properties of GBFS,      | 84  |
|         | GCB and FAgeopolymer materials                           |     |
| 4.1.5.1 | Compressive strength                                     | 84  |
| 4.1.5.2 | Chemically combined water contents                       | 87  |
| 4.1.5.3 | Combined slag contents                                   | 88  |
| 4.1.5.4 | Bulk density and total porosity                          | 90  |
| 4.1.5.5 | X-ray diffraction                                        | 92  |
| 4.1.5.6 | Scanning electron microscopy                             | 94  |
| 4.2.1   | Resistance to thermally treated temperatures:            | 96  |
|         | Resistance to thermally treated temperatures of alkali   |     |
|         | activated slag geopolymer                                |     |
| 4.2.1.1 | Compressive strength                                     | 96  |
| 4.2.1.2 | Bulk density and Total porosity                          | 98  |
| 4.2.1.3 | Weight loss                                              | 100 |
| 4.2.1.4 | The XRD diffraction patterns:                            | 102 |
| 4.2.1.5 | Scanning electron microscopy                             | 104 |
| 4.2.2   | Performance at high temperature of alkali activated slag | 106 |
|         | pastes produced with fly ash and ground clay brick       |     |

|         | based activators                                                    |     |
|---------|---------------------------------------------------------------------|-----|
| 4.2.2.1 | Compressive strength                                                | 106 |
| 4.2.2.2 | Bulk density and Total porosity                                     | 108 |
| 4.2.2.3 | Weight loss                                                         | 111 |
| 4.2.2.4 | The XRD diffraction patterns                                        | 112 |
| 4.2.2.5 | Scanning electron microscopy                                        | 115 |
| 4.3     | Resistance toaggressive attack                                      | 117 |
| 4.3.1.  | Resistance of alkali activated slag geopolymer to aggressive attack | 117 |
| 4.3.1.  | Magnesium sulphate solution                                         | 118 |
| 4.3.1.1 | Compressive strength                                                | 118 |
| 4.3.1.2 | Bulk density and total porosity                                     | 120 |
| 4.3.1.3 | Chemically combined water contents                                  | 122 |
| 4.3.1.4 | Total sulphate contents                                             | 124 |
| 4.3.1.5 | XRD diffraction patterns                                            | 125 |
| 4.3.1.6 | Scanning electron microscopy                                        | 126 |
| 4.3.2   | Magnesium chloride solution                                         | 127 |
| 4.3.2.1 | Compressive strength                                                | 128 |
| 4.3.2.2 | Bulk density and total porosity                                     | 130 |
| 4.3.2.3 | Chemically combined water contents                                  | 132 |
| 4.3.2.4 | Total chloride contents                                             | 134 |
| 4.3.2.5 | XRD diffraction patterns                                            | 135 |
| 4.3.2.6 | Scanning electron microscopy                                        | 136 |
| 4.3.3   | tance of alkali activated slag and other geopolymer to re attack    | 138 |
| 4.3.3   | ignesium sulphate solution                                          | 138 |

| 4.3.3.1                 | mpressive strength                                  | 138 |
|-------------------------|-----------------------------------------------------|-----|
| 4.3.3.2                 | Bulk density and total porosity                     | 140 |
| 4.3.3.3                 | Total Sulphate contents                             | 143 |
| 4.3.3.4                 | XRD diffraction patterns                            | 145 |
| 4.3.3.5                 | Scanning electron microscopy                        | 146 |
| 4.3.4                   | gnesium chloride solution                           | 148 |
| 4.3.4.1                 | mpressive strength, bulk density and total porosity | 148 |
| 4.3.4.2                 | Total chloride contents                             | 152 |
| 4.3.4.3                 | XRD diffraction patterns                            | 154 |
| 4.3.4.4                 | Scanning electron microscopy                        | 156 |
|                         | CHAPTER V                                           | 159 |
| SUMMARY AND CONCLUSIONS |                                                     |     |
|                         | REFERENCES                                          | 165 |
|                         | ARABIC SUMMARY                                      | 1   |

### **List of Tables**

| No        | Title of Table                                      | Page |
|-----------|-----------------------------------------------------|------|
| Table(1)  | Classification of Alkali activators                 | 11   |
| Table(2)  | Chemical analysis of starting materials mass        | 27   |
| Table(3)  | Mix composition of the investigated mixes, (mass %) | 31   |
| Table(4)  | Mix composition, designations and                   | 38   |
|           | water/solid (W/S) ratio                             |      |
| Table(5)  | Compressive strength of GBFS upto 360 days          | 39   |
| Table(6)  | Chemically combined water contents of slag          | 40   |
|           | geopolymer upto 360 days                            |      |
| Table(7)  | combined slag contents of slag geopolymer (GBFS)    | 42   |
|           | upto 360 days                                       |      |
| Table(8)  | Bulk density of slag geopolymer (GBFS) upto 360     | 43   |
|           | days                                                |      |
| Table(9)  | Total porosity of slag geopolymer (GBFS) upto 360   | 44   |
|           | days                                                |      |
| Table(10) | Mix composition, designations and water/solid (W/S) | 49   |
|           | Ratio                                               |      |
| Table(11) | Compressive strength of alkali-activated GBFS-FA    | 50   |
|           | geopolymer upto 360 days                            |      |
| Table(12) | Chemically combined water contents of alkali        | 52   |
|           | activated GBFS-FA geopolymer upto 360 days          |      |
| Table(13) | combined slag contents of geopolymer binder upto    | 53   |
|           | 360 days                                            |      |
| Table(14) | Bulk density of slag geopolymer (GBFS) upto 360     | 55   |
|           | days                                                |      |

## List of Tables

| Table(15) | Total porosity of slag geopolymer (GBFS) upto 360 days                                        | 56 |
|-----------|-----------------------------------------------------------------------------------------------|----|
| Table(16) | Mix composition, designations (mass%) and water/solid (W/S) ratio                             | 61 |
| Table(17) | Compressive strength of alkali-activated GBFS-GCB mixes upto 360 days                         | 62 |
| Table(18) | Chemically combined water contents of alkaliactivated GBFS-GCB geopolymer mixes upto 360 days | 64 |
| Table(19) | Combined slag contents of alkali-activated GBFS-GCB geopolymer mixes upto 360 days            | 65 |
| Table(20) | Bulk density of alkali-activated GBFS-GCB geopolymer mixes upto 360 days                      | 67 |
| Table(21) | Total porosity of alkali-activated GBFS-GCB geopolymer binders upto 360 days                  | 68 |
| Table(22) | Mix composition, designations and water/solid (W/S) Ratio                                     | 73 |
| Table(23) | Compressive strength of (GBFS and GCB-FA) geopolymer mixes upto 360 days                      | 74 |
| Table(24) | Chemically combined water of GBFS and GCB-FA geopolymer mixes upto 360 days                   | 76 |
| Table(25) | Combined slag of (GBFS and GCB-FA) geopolymer mixes upto 360 days                             | 77 |
| Table(26) | Bulk density of (GBFS and GCB-FA) geopolymer mixes upto 360 days                              | 79 |
| Table(27) | Total porosity of (GBFS and GCB-FA) geopolymer mixes upto 360 days solution upto 12 months    | 79 |
| Table(28) | Mix composition, designations and water/solid (W/S) ratio                                     | 84 |