

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

GENETIC MODEL AND BIOSPECTRAL ANALYSIS FOR MONITORING MUTATIONS IN THE CELL CYCLE FOR APPLICATION IN WASTEWATER TREATMENT

THESIS

Submitted to the Faculty of Science-Ain Shams University-In Partial fulfillment for the Degree of Doctor of Philosophy (Ph.D.) in Science in Biophysics

By

Nancy Alaa El-Din Yasien El-Naker

Assistant Lecturer, Biophysics group, Physics Department

Supervised by

Prof. Dr. Abdelsattar M. Sallam

Professor of Biophysics Faculty of Science Ain Shams University

Prof. Dr. Hatem H. El-Ghandoor

Professor of Physics Faculty of Science Ain Shams University Prof. Dr. El-Sayed Mahmoud El-Sayed

Professor of Biophysics Faculty of Science Ain Shams University

Prof. Dr. Mona S. H. Talaat

Professor of Biophysics Faculty of Science Ain Shams University

Dr. Ahmed F. Yousef

Assistant Professor Department of Chemistry Khalifa University - Abu Dhabi – UAE

> Department of Physics Faculty of Science Ain Shams University (2021)

Acknowledgment

In the name of **GOD** "the Merciful". **Thanks GOD** for everything, **Thanks GOD** for all the blessings.

Foremost, I would like to express my sincere gratitude and appreciation to my supervisor *Prof. Dr. Abdelsattar Mohamed Sallam*, Professor of Biophysics, Physics Department, Faculty of Science, Ain Shams University for his continuous support, motivation, patience and enthusiasm during the whole time of research and writing.

I am also grateful and honored to be supervised by *Prof. Dr. El-Sayed Mahmoud El-Sayed*, Professor of Biophysics, Physics Department, Faculty of Science, Ain Shams University for his insistence to encourage and advise me all the time. His immense knowledge helped in every aspect since I started the research till the end.

Special thanks to my respectful supervisor *Prof. Dr. Hatem Mahmoud Hamdy El-Ghandoor*, Professor of Physics, Physics Department, Faculty of Science, Ain Shams University. It is always a privilege to be advised and guided by Prof. Dr. Hatem.

I would like to express my special gratitude and thanks to my supervisor *Prof. Dr. Mona Salah El-Din Hassan Taalat*, Professor of Biophysics, Physics Department, Faculty of Science, Ain Shams University for motivating me and imparting he knowledge and expertise in the research and thesis work.

With profoundest gratitude and great humility, I extend my gratefulness to my advisor and mentor, *Dr. Ahmed Fayez Yousef*, Assistant Professor, Department of Chemistry, Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, UAE. I would like to thank him for his incredible contribution in shaping the foundation of the PhD research approach. His unflinching support, constructive criticism and his truly scientific intuition inspired me

and enriched my growth as a PhD student. He has triggered and nourished my intellectual maturity that I will benefit for whole of my life.

I owe a deep sense of gratitude to *Khalifa University of Science and Technology* "Masdar Campus" for their distinguished and inspiring environment to conduct my PhD research work. I would like to thank them for their continuous supply of guidance, information, resources, and materials. Everyone was collaborating to help and complete this endeavor.

I convey my grateful acknowledgment and thanks to *Dr. Shadi Wagih Hasan*, Associate Professor, Department of Chemical Engineering, Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, UAE. He has been there all the time encouraging, motivating and inspiring me. His friendly nature, gentle and a wonderful advisor who made the whole environment full of energy and enthusiasm.

My deepest gratitude and thanks to my parents, my special dad *Prof. Dr. Alaaeldin Yassin Elnaker* and wonderful mum *Prof. Dr. Hala Ismail Elsawy* for their love and supporting me spiritually throughout my life. Also, I would like to thank my best sisters ever *Nesreen* and *Nesma* for their warmth and attachment towards me.

Most of all, my beloved, fabulous and supportive husband *Mostafa Hamza*, best person ever who is always by my side anytime and everywhere. He is always my strength and may GOD protect and bless him.

Contents

Contents

Acknowledgment	i
List of Figures	vii
List of Tables	х
List of Abbreviations	xi
Abstracts	xiii
Chapter one	
Introduction and Literature Review	1
1.1 Introduction	1
1.2 Literature Review	5
1.2.1 Modelling in wastewater treatment plants	5
1.2.2 Spectral analysis in WWTPs	7
1.2.2.1 Ultraviolet-Visible (UV-Vis) Spectrophotometer	7
1.2.2.2 NanoDrop Spectrophotometer	8
1.2.3 Microbial community structure and function in biological wastewater	
treatment plants	8
1.2.4 Microbial community structure in electrobioreactors	11
Chapter Two	
Theoretical aspects	14
2.1 Typical characteristics of wastewater treatment plants	14
2.1.1 Influent Characteristics	14
2.1.2 Main Processes Involved	15
2.2 Biological wastewater treatment	16
2.2.1 Overview of biochemical operations	17
2.2.2 Major types of microorganisms and their roles	19
2.3 Membrane bioreactors (MBRs) and electrically enhanced	
membrane bioreactors (eMBRs)	21
2.4 The integration of biological wastewater and electrochemical treatment	
(Bioreactors and Electrobioreactors)	23
2.5 Operating parameters	24

2.5.1 Current density (CD)	
2.5.2 Hydraulic retention time (HRT)	25
2.6 Bio-spectral analysis	25
2.6.1 Ultraviolet-Visible Spectrophotometer	25
2.6.2 NanoDrop spectrophotometer	26
2.7 Monitoring mutations (changes) of microbial communities in wastewater	
electrobioreactors	26
2.7.1 Overview of identification of microbial community structure	27
2.7.1.1 viable cell count	27
2.7.1.2 Identification by enzyme activities	28
2.7.1.3 Monitoring microbial growth namely cell cycle	28
2.7.1.4 Metagenomics	30
2.7.1.5 the 16S ribosomal RNA (rRNA) genes	31
2.7.1.6 High-throughput sequencing and bioinformatic analysis	33
2.8 Serial Passaging	35
2.8.1 Fundamentals of Serial Passaging	35
2.8.2 Application of serial passaging technique in biological wastewater	
treatment electrobioreactors	36
2.9 Modeling of wastewater treatment plants	37
2.9.1 Conceptual models in wastewater treatment systems and wastewater	
electrobioreactors	39
Chapter Three	
Materials and Methods	. 40
3.0 Establishment of the electrobioreactors	40
3.1 Studying the impact of electric field on microbial community structure and	
electrobioreactor performance	
3.1.1 Electro-bioreactor design	
3.1.2 Synthetic wastewater and sludge characteristics	
3.1.3 Microbial community analysis	
3.2 Studying the impact of hydraulic retention time on the microbial community	
structure and electrobioreactor performance	-
3.2.1 Electro-bioreactor experimental design	
3.2.2 Synthetic wastewater and sludge characteristics	48

3.2.3 Sampling and bacterial counts	48
3.2.4 Microbial community analysis	49
3.2.5 Operational parameters	50
3.3 Serial passaging	51
3.3.1 Electro-bioreactor experimental design	51
3.3.2 Synthetic wastewater and sludge characteristics	52
3.3.3 Microbial community analysis	53
3.3.4 Operational parameters	54
3.3.5 QIIME pipeline	54
3.4 Conceptual genetic model	58
3.4.1 Electro-bioreactor design, microbial community analysis and	
wastewater characterization	58
3.4.2 Conceptual model establishment	60
Chapter four	
Results and Discussion	. 62
4.1 Studying the impact of current density on microbial community structure and	i
electrobioreactor performance	62
4.1.1 Electro-bioreactor biological organic and nutrient removal efficiency.	62
4.1.2 Temporal variations in the bacterial community structure	64
4.1.3 Physiochemical influence on bacterial diversity	66
4.1.4 Phylogeny of microbial community	67
4.1.5 Functional bacteria in electro-bioreactors	71
4.2 Studying the impact of hydraulic retention time (HRT) on the microbial	
community structure and electrobioreactor performance	76
4.2.1 Reactor performance and physiochemical parameters under	
different HRT	76
4.2.2 Effect of HRT on total bacterial counts (TBC in CFU/mL)	79
4.2.3 Overall bacterial diversity in CBRs and EBRs	80
4.2.4 Phylogeny and abundance of overall bacterial communities	84
4.2.5 Comparison of functional bacterial genera response to short and long	3
HRTs in control bioreactors and electro-bioreactors	88
4.2.6 Functional bacteria in control and electro-bioreactors in linkage to	
hiological nutrient removal	97

Contents

List of Figures

Fig. (2-1) Typical variations of the influent flowrate	15
Fig. (2-2) Primary and secondary treatment of sewage, using the activated sludge	
process	16
Fig. (2-3) Electrochemical mechanisms occurring in the operation of the electro-	
(eMBR)	22
Fig. (2-4) DR6000™ UV-Vis spectrophotometer	26
Fig. (2-5) NanoDrop™ 2000/2000c Spectrophotometers	26
Fig. (2-6) Methods to determine microbial growth	29
Fig. (2-7) (a) V4 was amplified from each sample using primers 515F and 806R to	ailed
with P5 and P7 sequences, respectively (b) Raw intensities (matrix and phasing	
corrected) for an example perfect 254 bp paired-end read from the V4 library	35
Fig. (3-1) Photograph of setting-up the batches of the reactors. (a) Aluminum and	d
stainless-steel electrodes separated by a piece of wood (5 cm) (b) plastic containe	ers
(c) Sludge collected (d) electric wires and metal connecting clips40 Fig. (3-2)	
Photograph after assemblance and connecting the power supplies to the reactors	s (a)
EBRs (electrodes inserted) (b) CBRs (no electrodes) (c)	
Power supplies adjusted at selected current densities. (d) HACH HQ40d	
single-input multimeter probe	
Fig. (3-3) Live photo from Water Research Center laboratory – Masdar Institute	while
setting and plugging the electrobioreactors to start the experiment	41
Fig. (3-4) An example for the batch of reactors while running for 24 hours (a) EB	Rs
(b) CBRs (c) power	41
Fig. (3-5) Live photo from Water Research Center laboratory – Masdar Institute	
experiment while disconnecting the reactors to carry out the measurements	42
Fig. (3-6) Monitoring and measuring the operating conditions (electrical	
conductivity, pH, temperature) using the multimeter probeprobe	
Fig. (3-7) Photograph of settled sludge after 24 hours of treatment in the EBRs at	nd
CBRs	
Fig. (3-8) An example of sample measurement for Luria Broth petri dish plate of	the
bacteria grown in the EBR operated at 7 A/m2. This is to determine the total	
bacterial counts in the treated sludge after exposure to different current densitie.	s 43
Fig. (3-9) Experimental set-up of control bioreactor and electrobioreactor	45
Fig. (3-10) (a) Photograph and (b) schematic diagram of the experimental setup	of
control bioreactor and electro-bioreactors operated at CD of 3 A/m2 under differ	rent
HRTs: Short HRTs (6, 10, and 16 h) long HRTs (24, 50 and 75 h)	
47	
Fig. (3-11) (a) Photograph and (b) schematic diagram of the experimental setup	of
serially passaged control bioreactor and electro-bioreactors operated at current	
densities 3 and 7 A/m2	52
Fig. (3-12) Methodology flowchart of EBRs and CBRs collectively from the	
experimental data incorporated in the model	
Fig. (3-13) Overview of conceptual model establishment, development, factors an	
assumptions	61

Fig. (4-1) Three-dimensional principal coordinate analysis (PCoA) plot showing the
bacterial community difference of (a) Sludge samples taken from the MBR plant at
different months fed with SWW and electro-bioreactor samples (i.e. treated samples
from the same sludge sampling day) (b) Electro- bioreactor and bioreactor samples,
CD=3, 5 and 7 A/m2 and control samples, respectively. The analysis was performed
using the abundance matrix from all detected 16S rRNA gene (0.90 similarity) OTUs
in different samples, and pairwise community distances were determined using the
weighted UniFrac algorithm64-65
Fig. (4-2a). Alpha diversity calculations using Chao1 and PD whole tree methods.
Sludge samples at different months fed with SWW66
Fig. (4-2b). Alpha diversity calculations using Chao1 and PD whole tree methods.
Control bioreactor and electro-bioreactors at CD=3, 5 and 7 A/m2 (all samples are
from sludge sampled on the same day fed with SWW)67
Fig.(4-3a) Beta-diversity using UPGMA clustering analysis using weighted UniFrac68
Fig.(4-3b) Phylogeny of the bacterial communities in the control bioreactor and
electro-bioreactors at phylum level
Fig.(4-3c) Phylogeny of the bacterial communities in the control bioreactor and
electro-bioreactors at family level70
Fig. (4-4a) Heat map of functional bacterial families in control bioreactor and
electro-bioreactors
Fig. (4-4b)- (4-4c) Graph indicating differences in the relative abundance of
functional bacterial families between control bioreactor and electro- bioreactors for
high abundance bacterial families and (c) Low abundance bacterial families. An
average observed OTU counts is indicated with the standard deviation represented by
an error bar
Fig. (4-5) Removal efficiencies of (a) sCOD, (b) PO43 - P and (c) NH4+-N, (d) effluent
NO3N concentrations, and (e) total bacterial count (TBC) in control bioreactors and
electro-bioreactors under different HRTs77-78
Fig. (4-6) Alpha (α) diversity richness calculations using (a) Chao1 and (b) PD whole
tree methods81
Fig. (4-6) Three-dimensional principal coordinate analysis (PCoA) plot showing the
bacterial community variations present in (c) control bioreactors (C- "HRT hours"),
(d) Electro-bioreactors (E-"HRT hours"), and (e) both control and electro-bioreactors
under different HRTs83
Fig. (4-7) (a) Beta (β)-diversity using UPGMA clustering analysis using weighted
UniFrac. Phylogeny of the bacterial communities in the control bioreactor and
electro-bioreactors at (b) phylum level, and (c) family level. 78 Fig. (4-7b) Phylogeny
of the bacterial communities in the control bioreactor and electro-bioreactor at
phylum level86-88
Fig. (4-7c) Phylogeny of the bacterial communities in the control bioreactor and
electro-bioreactor at family level88
Fig. (4-8) Heat map of functional genera in (a) control bioreactors under different
HRTs89
Fig. (4-8) Heat map of functional genera in (b) electro-bioreactors under different
HRTs90
Fig. (4-9) Graph indicating differences in the relative abundance represented in OTU
counts of functional bacterial genera between control bioreactors and electro-
bioreactors: (a) high abundant bacterial genera at short HRTs, (b) low abundant
bacterial g genera at short HRTs, (c) high abundant bacterial genera at long HRTs,
and (d) low ahundant hacterial genera at long HRTs

Fig. (4-10) Removal efficiencies of (a) COD, (b) PO43P in serially passaged control bioreactor and electro-bioreactors E3 and E7 operated at current densities 3 and 7 A/m2, respectively. (c) pH variations in serially passaged control bioreactor and electro-bioreactors E3 and E7 operated at current densities 3 and 7 A/m2, respectively
methods104
Fig. (4-11) (b) three-dimensional principal coordinate analysis (PCoA) plot showing the bacterial community variations present in serially passaged control bioreactors (red data points) and electro-bioreactors E3 (blue data points) and E7 (orange data points). It is noted that bacterial communities in electro-bioreactors clustered together when compared to control bioreactor. (S-D1: Fresh sludge sample without feeding with synthetic wastewater; C-Di: Control sample in day i; E-Dj: Electro-bioreactor sample in day j)
Fig. (4-12b) Phylogeny of the bacterial communities in the control bioreactor and
electro-bioreactors at phylum level110
Fig. (4-12c) Phylogeny of the bacterial communities in the control bioreactor and electro-bioreactors at family level111
Fig. (4-13) Heat map of functional bacterial families in serially passaged C-
bioreactor, E3 and E7. It was observed that microbial subpopulations associated with
sludge bulking and foaming are different in electro- bioreactors when compared to
control bioreactor. (C-Di: Control sample in day i; E-Dj: Electro-bioreactor sample in
day j)115 Fig. (4-14). Conceptual model of how different microbial species associated with the
degradation of pollutants in wastewater are affected by varying CD and HRT in
electro-bioreactors (EBRs): linkage between substrate removal, EBRs operated at CL
of 3, 5 and 7 A/m2 (EBR3, 5, 7) and HRT (short 6, 10 and 16 h and long 24, 50 and 75 h) and involved bacterial groups or species are shown. To obtain the highest removal efficiency of a given substrate, EBRs should be operated as illustrated in the model and consequently bacterial groups listed are either enriched (i.e. high abundance) or depleted (i.e. low abundance). For example, an EBR operated at a short HRT at 3 A/m2 enriches the population of Flavobacterium, Lactococcus and Vogesella, which are all associated with efficient COD removal
Fig. (4-15). Conceptual model of how different microbial species associated with the
degradation of pollutants in wastewater are affected by varying HRT in control bioreactors (CBRs). The model can be read the same way as the model for EBR's
illustrated and explained in Fig. (4-14)123
Fig. (4-16). Hypothetical illustration of the mechanisms of nutrients efficient
removals when integrating electrochemical process with biological treatment127
Fig. (5-1) Schematic drawing indicating mechanisms working together in order to
transform wastewater into cleaner effluent water in the electro- bioreactor129
Fig. (5-2) Schematic diagram showing manipulation of the operating conditions that favor functional bacteria relevant to specific types of wastewater

List of Tables

Table (3-1) Obtained measurements of the Initial characteristics of synthetic
wastewater and sludge samples49
Table (3-2) Measurement of the operational parameters of CBR samples (C-6, C-10,
C-16, C-24, C-50 and C-75) and EBR samples (E-6, E- 10, E-16, E-24, E-50
and E-75)50
Table (3-3): Data monitored and measured for the operational parameters of serially
passaged control bioreactor samples and electro-bioreactors samples E3
and E754
Table (4-1): Effluent characteristics, concentrations, and operational parameters of 7
samples63
Table (4-2): OTU counts of various functional bacteria in control bioreactor and
different electro-bioreactors and their corresponding role in nutrient
and pollutant removal75
Table (4-3) OTU counts of various functional bacterial genera in control bioreactor
(C) and electro-bioreactors (E) operated at short HRTs (6, 10 and 16 h)
and their corresponding role in nutrient and pollutant removal 92-93
Table (4-4) OTU counts of various functional bacterial genera in control bioreactor
(C) and electro-bioreactors (E) operated at long HRTs (24, 50 and 75 h)
and their corresponding role in nutrient and pollutant removal95
Table (4-5) OTU counts of bacterial families in serially passaged control bioreactor
Table (4-6) OTU counts of bacterial families in serially passaged electro-bioreactor
operated at CD of 3 A/m ² 114
Table (4-7) OTU counts of bacterial families in serially passaged electro-bioreactor
operated at CD of 7 A/m ² 114
Table (4-8) Functional bacterial genera in EBRs versus CBRs