

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering

Civil Structural Department

Investigation of Short Term Deflection of Reinforced Concrete Flat Slabs

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering

(Structural Engineering)

By

Eng. Amr Mohamed Elshafey

Bachelor of Science In Civil Engineering

Faculty of Engineering, Ain Shams University, 2015

Supervised by

Prof. Dr. Ayman Abou El-fotouh Abdel-maksoud

Professor, of Structural Engineering Department Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Amin Saleh Aly Saleh

Professor, of Structural Engineering Department Faculty of Engineering, Ain Shams University, Cairo, Egypt

Assoc. Prof. Dr. Shrief Kamal Elwan

Associate Professor, Structural Engineering Department Higher Institute of Engineering – El Shorouk Academy, Cairo, Egypt

.

Cairo - (2021)

Ain Shams University-Faculty of Engineering Civil Structural Department

Investigation of Short Term Deflection of Reinforced Concrete Flat Slabs

By

Eng. Amr Mohamed Elshafey

B.Sc. in Civil Engineering (Structural)

Faculty of Engineering - Ain Shams University

EXAMINERS COMMITTEE

1- Prof. Dr. Ashraf Hassan Elzanaty	
Professor, Structural Engineering Department	
Faculty of Engineering, Cairo University, Cairo, Egypt	
2- Prof. Dr. Amr Hussain Zaher	
Professor, Structural Engineering Department	
Faculty of Engineering, Ain Shams University, Cairo, Egypt	
3- Prof. Dr. Ayman Abou El-fotouh Abdel-maksoud	
Professor, Structural Engineering Department	
Faculty of Engineering, Ain Shams University, Cairo, Egypt	
4- Prof. Dr. Amin Saleh Aly Saleh	
Professor, Structural Engineering Department	
Faculty of Engineering, Ain Shams University, Cairo, Egypt	

Date: / /202

Statement

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Structure Engineering, Faculty of Engineering, Ain Shams University, from 2016 to 2021.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

Student Name

Amr Mohamed Elshafey

Signature

Ain Shams University-Faculty of Engineering Civil Structural Department

Author Data

Name : Amr Mohamed Elshafey

Date of birth : 14-05-1993

Place of birth : Riyadh , Saudi Arabia

Last academic degree : B.Sc.

Field of specialization : Civil Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2015

Current job : BIM Structural Engineer

Acknowledgement

I would like to thank ALLAH for his blessings all the way till I finished this

research and throughout my life.

Firstly, I would like to express my sincere gratitude to my supervisors for their

great effort in solving all the problems during this research and for their valuable

advice and encouragement,

Prof. Dr. Ayman Abou El-fotouh Abdel-maksoud

Prof. Dr. Amin Saleh Aly

Assoc. Prof. Dr. Shrief Kamal Elwan

Then, I wish to express all the meanings of love, gratitude and appreciation to my

family (my father, my mother, my brother and my sister) and all my Friends for

their support and continuous prayers for me till finishing this thesis.

Finally, Special thanks to all my colleagues and my mangers and every one for their

help and support during this research.

Amr Mohamed Elshafey.

IV

List of Publications

 Prof. Dr. Ayman Aboeolfotooh Embaby, Prof. Dr. Amin Saleh Aly, Dr. Sherif Kamal Elwan, Amr Mohamed Elshafey, "Investigation of Short Term Deflection of Reinforced Concrete Flat Slabs" Published in International Research Journal of Innovations in Engineering and Technology (IRJIET), Volume 3, Issue 9, pp 32-38, September 2019. aa

https://irjiet.com/common_src/article_file/1568100352_a724e5369b_3_irjiet.pdf

Abstract

This research is dedicated to correct the short term deflection of concrete flat slab calculated based on Branson equation used in both ACI 318 code and ECB-207 code. Due to assumed linear material behavior, sudden reduction of effective inertia after cracking and 1D action of this equation (was conducted after studies in simply supported beams), calculated deflection from this equation is overestimated form actual behavior, so a correction factor for deflection calculated from Branson equation is the main objective for this research.

After verification of ABAQUS Software as FEM simulation of flat slab behavior, a parametric study is conducted to make charts for the correction factor of deflection calculated using Branson equation. Assuming that Fc'= 30 MPa And Fy=400 MPa , a parametric study is made on total of 75 square simply supported flat slab and 75 one way simply supported flat slab. Those slabs are modeled using both CSI SAFE (using ACI-318 Cracking Criteria) and ABAQUS (Using CPDM behavior for concrete model) to present load deflection difference of each case on each model, then normalized deflection (Δ ABAQUS/ Δ cracked/ Δ) is calculated for each Δ (Mact/Mcr) to represent the different ratios of corrections over variance of super imposed dead load on slab.

Finally, for two way flat slab, charts were presented for different cases of loading methodology, applied super-imposed dead load, lower and top reinforcement ratios to correct the deflection calculated from CSI SAFE (Using ACI318 Equation and Cracking Criteria), and correction factor of Branson equation used in both ACI 318 code and ECB-207 code is derived for one way flat slab.

Keywords: Nonlinear analysis, Material nonlinearity, Reinforced concrete, reinforcing steel, Geometric nonlinearity, Concrete Damage Plasticity model, CPDM

Content

Table of Content

Acknowledgementiv	
List of Publicationsv	
Abstractvii	
Contentviii	
List of Figuresxii	
List of Tablexvii	
Nomenclaturexviii	
Abbreviationsxix	
List of Equationsxx	
Chapter 1: Introduction	1
1 Introduction	
1.1 General and Importance2	
1.2 Scope and Objective	
1.3 Thesis Outline	
Chapter 2: LITERATURE REVIEW4	
2 Literature Review5 -	•
2.1 Introduction	
2.2 Types of Reinforced concrete slabs	
2.2.1 One way Solid Slabs5 -	
2.2.2 Two way solid slabs 6 -	
2.2.3 Flat slab (Beamless slab)6 -	
2.3 Historical Background of Theoretical Studies of Moment of Inertia	
Prediction - 8 -	
2.4 Previous Studies for F.E Modeling for RC Elements 11 -	
2.5 Moment of Inertia Prediction for RC Element Deflection Calculation According to Different codes 13 -	
2.5.1 According to ACI Code (ACI 318-14) 13 -	

		2.5.2	According to Egyptian Code (ECP-2003)	14 -
		2.5.3	According to Euro code (EN1992-1-1)	14 -
	2.6	Comp	ressive Strength	15 -
	2.7	Crack	ing and Tensile Strength of Concrete	15 -
	2.8	Modu	lus of Elasticity and Stress-Strain Relationships	16 -
	2.9	Need	for the Current Research	17 -
Cha	pte	r 3: FINI	TE ELEMENT ANALYSIS	18
3		FINITE	ELEMENT ANALYSIS	19
	3.1	Introd	uction	19
	3.2	ABA(QUS Program Description	19
	3.3	Non-li	inear Behavior in ABAQUS Program	20
	3.4	Concr	ete Damage Plasticity Model	20
		3.4.1	Plasticity part	22
		3.4.1.	1 Yield function	22
		3.4.1.2	2 Flow rule	26
		3.4.1.3	3 Hardening law	27
	3.5	Imple	mentation of CPDM in ABAQUS	29
		3.5.1	Plasticity parameters	29
		3.5.1.	1 Dilation angle ψ	29
		3.5.1.2	2 Eccentricity	29
		3.5.1.3	3 F _{b0} /F _{c0}	29
		3.5.1.4	4 Viscosity parameter	29
		3.5.1.5	5 Kc parameter	29
		3.5.2	Uniaxial tension and compression stress behavior	30
	3.6	Struct	ural Element Types	32
		3.6.1	For Shell Element	32
		3.6.1.	1 Thick VS Thin Shell	32
		3.6.1.2	2 Finite-strain versus small-strain shell elements	33
	3.7	Mode	ling of Reinforcement	33
	3 8	Verifi	cation of ARAOUS Program	35

	3.8.1	MC Neice experiment	33
	3.8.1.1	Material Properties	35
	3.8.1.2	Loading, Time Step and Boundary Conditions	36
	3.8.1.3	Element Type, Modeling and Meshing	37
	3.8.1.4	Finite element result	37
	3.8.2	Xing Ma Experiment	38
	3.8.2.1	Material Properties	38
	3.8.2.2	Loading, Time Step and Boundary Conditions	39
	3.8.2.3	Element Type, Modeling and Meshing	40
	3.8.2.4	Finite element result	40
	3.8.3	Mazan D. Abdullah Experiments	42
	3.8.3.1	Material Properties	42
	3.8.3.2	Loading, Time Step and Boundary Conditions	43
	3.8.3.3	Element Type, Modeling and Meshing	44
	3.8.3.4	Finite element result	44
3.	9 Conclu	ısion	46
Chapt	ter4: PARA	AMETRIC STUDY	47
Chapt 4		ETRIC STUDY	
_	PARAMI		48
4	PARAMI 1 Introdu	ETRIC STUDY	48
4	PARAMI 1 Introdu 2 Descrip	ETRIC STUDYuction	48 48
4	PARAMI 1 Introdu 2 Descrip 4.2.1	ETRIC STUDY uction ption of the Analyzed Flat Slab	48 48 48
4	PARAMI 1 Introdu 2 Descrip 4.2.1 1 4.2.2	ETRIC STUDY uction ption of the Analyzed Flat Slab Loading and Boundary Conditions,	48 48 48 48
4	PARAMI 1 Introdu 2 Descrip 4.2.1 4.2.2 4.2.3	ETRIC STUDY uction ption of the Analyzed Flat Slab Loading and Boundary Conditions, Loading Methodology	48 48 48 48 51
4 4.	PARAMI 1 Introdu 2 Descrip 4.2.1 4.2.2 4.2.3 Materia	ETRIC STUDY ption of the Analyzed Flat Slab Loading and Boundary Conditions, Loading Methodology Reinforcement	48 48 48 48 51
4.4.4.	PARAMI 1 Introdu 2 Descrip 4.2.1 1 4.2.2 1 4.2.3 Materia 4 Investi	ETRIC STUDY	48 48 48 48 51 51
4. 4. 4. 4.	PARAMI Introdu Descrip 4.2.1 4.2.2 4.2.3 Materia Investi Results	ETRIC STUDY action ption of the Analyzed Flat Slab Loading and Boundary Conditions, Loading Methodology Reinforcement al Properties igated Parameters	48 48 48 48 51 51 51
4. 4. 4. 4.	PARAMI Introdu Descrip 4.2.1 4.2.2 4.2.3 Materia Investi Results 4.5.1	ETRIC STUDY	48 48 48 48 51 51 51 54 55
4. 4. 4. 4.	PARAMI 1 Introdu 2 Descrip 4.2.1 4.2.2 4.2.3 3 Materia 4 Investi Results 4.5.1	ETRIC STUDY	48 48 48 48 51 51 54 55 70

	4.6	Discu	ssion and comments 126 -	
		4.6.1	Effect of increasing load 126 -	
		4.6.2	Effect of increasing Lower Reinforcement 126 -	
		4.6.3	Effect of increasing Upper Reinforcement 127 -	
		4.6.4	Effect of increasing Flat Slab Span 127 -	
,	4.7	Sumn	nary and Conclusions - 128 -	
Cha	ptei	r5: SUM	IMARY AND CONCLUSIONS 129	-
5		Propose	d Method for one-way Flat Slab 130 -	
	5.1	Introd	luction 130 -	
	5.2	Descr	ription of the Analyzed Flat Slab 130 -	
		5.2.1	Loading and Boundary Conditions, - 130 -	
		5.2.2	Reinforcement 130 -	
	5.3	Mate	rial Properties 130 -	
	5.4 Proposed Equation		osed Equation 135 -	
	٥.٥	Resul	ts and Graphs 137	
		5.5.1	For Ast=0.00% 138	
		5.5.2	For Ast=0.10% 143	
		5.5.3	For Ast=0.20% 148	
		5.5.4	For Ast=0.30% 153 -	
		5.5.5	For Ast=0.40% 158 -	
	5.6	Discu	ssion and Comments 163 -	
	5.7	Conc	lusions 165 -	
Cha	ptei	r6: SUM	IMARY AND CONCLUSIONS 166	-
6		SUMM	ARY AND CONCLUSIONS 167 -	
	6.1	Sumn	nary 167 -	
	6.2	Conc	lusions 167 -	
	6.3	Sugge	estions for Future Research 168 -	
Cha	ptei	r7: Refe	rences 169	-
7		Referen	ces 170 -	

List of Figures

Figure 2-1 One Way and Two Way Slab	-
Figure 2-2 Flat Slab system Types7	-
Figure 2-3 Effective Moment Of Inertia To Actual Moment Relation 14	-
Figure 2-4 Effective Moment Of Inertia stress Strain relation 14	-
Figure 3-1 the evolution of the meridional section of the yield surface during	ıg
hardening	5
Figure 3-2 the evolution of the deviatoric section of the yield surface during	ıg
hardening for a constant volumetric stress of $\sigma V = -fc/3$	
Figure 3-3 The two hardening laws qh1 (solid line) and qh2 (dashed line)2	7
Figure 3-4 The initial inclination of the hardening curve qh1 at $\kappa p = 0$ is positive	/e
and finite, and the inclination of both qh1 and qh2 at $\kappa p = 1$ is Hp,2	8
Figure 3-5 Compression and Tension Behavior in Concrete Damage Plasticit	ty
Model3	0
Figure 3-6 Naming Element Coding System In ABAQUS	2
Figure 3-7 ABAQUS Conventional versus continuum shell element	4
Figure 3-8 McNeice Slab Experiment	5
Figure 3-9 McNeice Load-Deflection Data for Both Experimental and FEM3	7
Figure 3-10 Xing Ma Slab Experiment	8
Figure 3-11 Xing Ma Load-Deflection Data for Both Experimental and FEM4	.1
Figure 3-12 Mazan D. Slab Experiment	-2
Figure 3-13 Mazan D Load-Deflection Data for all Experimental and FEM4	.5
Figure 4-1 Total Load Definition in CSI SAFE	.9
Figure 4-2 Incremental Load in CSI SAFE	0
Figure 4-3 Incremental loading effect on stiffness according to newton Rapso	
approach Loading Definition in CSI SAFE5	
Figure 4-4 Moment versus curvature for a reinforced slab member	1
Figure 4-5 Loading and Boundary Condition For Two Way Flat Slab5	4
Figure 4-6 Load Deflection Curve for Case A-6000-100-02-005	6
Figure 4-7 Load Deflection Curve for Case A-7000-100-02-005	6
Figure 4-8 Load Deflection Curve for Case A-8000-100-02-005	
Figure 4-9 Load Deflection Curve for Case A-9000-100-02-00	7
Figure 4-10 Load Deflection Curve for Case A-10000-100-02-005	8
Figure 4-11 Load Deflection Curve for Case A-6000-100-03-00	
Figure 4-12 Load Deflection Curve for Case A-7000-100-03-00	
Figure 4-13 Load Deflection Curve for Case A-8000-100-03-00	9
Figure 4-14 Load Deflection Curve for Case A-9000-100-03-00	0
Figure 4-15 Load Deflection Curve for Case A-10000-100-03-00	6