

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

RELIABILITY ANALYSIS OF REINFORCED CONCRETE FLAT SLABS

By

Mohammed Ahmed Abdel-Razek Ali

A thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

RELIABILITY ANALYSIS OF REINFORCED CONCRETE FLAT SLABS

A thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of
Master of Science
In
Structural Engineering

By

Mohammed Ahmed Abdel-Razek Ali

B. Sc. Civil Engineering 2010 (Hon.)

Under the Supervision of

Dr. Walid Abdel-Latif Attia

Dr. Metwally Abd El-Aziz

Professor
Structural Engineering department
Faculty of Engineering
Cairo University

Professor
Structural Engineering department
Faculty of Engineering
Cairo University

Dr. Morcos Farid Saman

Assistant Professor
Structural Engineering department
Faculty of Engineering
Higher Technological Institute 10th of Ramadan

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

RELIABILITY ANALYSIS OF REINFORCED CONCRETE FLAT SLABS

By

Mohammed Ahmed Abdel-Razek Ali

A thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Structural Engineering

Approved by the Examining Committee

Dr. Walid Abdel-Latif Attia

Professor-Dept. of Structural Analysis, (Thesis Main Advisor)

Faculty of Engineering-Cairo University

Dr. Metwally Abd El-Aziz

Professor-Dept. of Structural Analysis, (Advisor)

Faculty of Engineering-Cairo University

Dr. Sherif Ahmed Mourad

Professor-Dept. of Structural Analysis, (Internal Examiner)

Faculty of Engineering-Cairo University

Dr. Alaa Gmal Sherif

Professor-Dept. of Structural Analysis, (External Examiner)

Faculty of Engineering-Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
Year 2020

Acknowledgment

I thank God who is unique for the blessings. I praise God for helping me to complete this thesis. I ask for his pardon and forgiveness. Praise be to God for facilitating the reasons for me from everything and the people in my life.

I thank my mother and pray to God to preserve and take care of her. I thank my family for standing by me and providing psychological and moral support, and I hope they will forgive me, as I have burdened them with my burden.

I thank God for the supervising doctors, I thank Prof. Dr. Metwally Abd El-Aziz and I ask God for him the mercy and forgiveness, as he provided me with the necessary support until he died.

I also thank Prof Dr. Walid Abdel-Latif Attia, for his approval to supervise after the death of Prof. Dr. Metwally Abd El-Aziz, under difficult circumstances and pressured time. I also always thank him for providing me with sufficient support, wishing him continued health and wellness.

I thank Dr. Morcos Farid Saman, he Lend me a helping hand in all stages starting from choosing the topic of the thesis and passing through supervising it and providing the necessary scientific material to contribute to the completion of the thesis. I thank him for the psychological and moral support and patience for me to learn, wishing him continued health and peace of mind.

I thank God for the presence of my friends in my life, as they supported me emotionally and morally despite the busy work and life's concerns.

I would like to thank my big brother Eng. Mohamed Darwish for providing me with the necessary materials to learn the programming language and for educating me and broadening my horizon in its application and tracking it to my development throughout the thesis and presenting his suggestions.

I thank my brother Eng. Mohamed Fathy Ali, who was keen on explaining to me how to insert references and tables automatically.

I thank my professors and colleagues for their continued check on my news and for following up on my progress in the thesis. I also thank my professors who I have learned from them.

Table of Contents

LIST OF TA	ABLES		vi
LIST OF FI	GURES	<i>\</i>	vii
Nomenclatu	re	v	/111
ABSTRACT			хi
CHAPTER :	1: INTRODUC	CTION	1
1.1.	Introduction	1	1
1.2.	Objectives		. 1
1.3.	Scope		1
1.4.	Preview		. 2
CHAPTER 2	2: REVIEW O	F THE PREVIOUS WORK	3
2.1.	Introduction	1	. 3
2.2.	Flexure fail	ure modes of slabs	3
2.3.	Reliability a	analysis	5
2.3	.1. Proba	ability distribution for basic random variables	5
	2.3.1.1.	Resistance random variables	5
	2.3.1.2.	Load random variables	6
2.3	.2. Meth	ods for determination of the failure probability	6
	2.3.2.1.	Failure probability for individual modes methods .	6
	2.3.2.2.	Failure probability for system methods	7
	2.3.2.2	2.1. Integration methods	7
	2.3.2.2	2.2. Simulation methods	7
	2.3.2.2	2.3. Approximate methods	8
2.4.	Application	s	9
	2.4.1. Relia	bility analysis of common types of structures	9

		2.4.2.	Reliability Analysis of Reinforced Concrete slabs	10
CHA	PTER :	3:THE	YIELD LINE METHOD	.11
	3.1.	Introd	duction	.11
	3.2.	The C	Concept of The Plate Bending	.11
	3.2	2.1.	Internal Actions Due to Transverse Loads	.12
	3.2	2.2.	The deformations	.13
	3.2	2.3.	The Relation Between Moments and the Deformations	.14
	3.3.	Analy	ysis of Slabs Using the Yield Line Theory	16
	3.3	3.1.	The Assumptions of The Yield Line Theory	.16
	3.3	3.2.	The Behavior of the Reinforced Concrete Slab	
			Under Loading	17
	3.3	3.3.	The Ultimate Moment Resistance at Yield Line	19
	3.3	3.4.	The Yield Line Patterns	.20
	3.4.	Meth	ods for Analysis of Slabs Using the Yield Line	22
	3.4	l.1.	The Energy Method	22
	3.4	4.2.	The Equilibrium Method	23
		3.4.2.1	Equivalent Forces Along the Yield Line	24
		3.4.2.2	2. The magnitude of the nodal force	26
CHA	PTER 4	4:THE 1	RELIABILITY	.28
	4.1.	Introd	duction	.28
	4.2.	Failur	e Probability of Individual Models	28
	4.2	.1.	Case of Two Random Variables	29
	4.2	2.2.	Case of Multi-Random Variables	31
	4.2	2.3.	The Reliability Index	.31
	4.3.	Failu	re Probability Estimation for The Structural System	32
	4.3	.1.	The Structural System Classification	32
		431	1. Series Systems	.32

		4.3.1.2.	Para	ıllel Systems	32
		4.3.1.3.	Con	nbined Systems	33
	4.3	.2. T	he Estim	ation of System Reliability	34
		4.3.2.1.	Nun	nerical Integration	35
		4.3.2.2.	Bou	nding Techniques	35
		4.3.2.3.	Mor	nte-Carlo simulation	36
		4.3.2.4.	The	Approximate Methods	36
		4	.3.2.4.1.	First order Approximate methods	37
		4	.3.2.4.2.	The PNET (Probabilistic Network Ev Technique) Method	
СНА	PTER 5	5:SUGGE	STED PRO	OCEDURE FOR RELIABILITY	
		Al	NALYSIS	OF FLAT SLABS	39
	5.1.	Introduc	ction		39
	5.2.	The Program Skeleton39			
	5.3.	The Main Assumption40			
	5.4. 5.4			elopment of Failure Patternss failure pattern	
	5.4	.2. T	hree-Poir	nts failure pattern	41
	5.4	.3. F	our-Point	ts failure pattern	42
	5.5.	The Lin	nit State E	Equation	43
	5.6.	The Fai	lure Prob	ability of Individual Mechanism	43
	5.7.	Failure 2	Probabili	ty of The Slab System	44
	5.8.	Illustrat	ive Exam	ple	44
	5.9. I	Parametri	c studies		52
СНА	PTER (6:CONCL	USION A	ND FUTURE WORK	55
	6.1.	Summa	ry		55
	6.2.	Conclus	sion		55

6.3.	Suggested future work56
References .	57
Appendix A:	Computer programing64

List of Tables

Table 5-1: Coordinate of two-points patterns and their limit state equations (Complete scheme)
Table 5-2: Coordinate of three-points patterns and their limit state equations (Sample scheme)
Table 5-3: Coordinate of four-points patterns and their limit state equations (Sample scheme)
Table 5-4: Results of the probabilistic analysis for two-points patterns (Complete scheme)
Table 5-5: Results of the probabilistic analysis for three-points patterns (Sample scheme)51
Table 5-6: Results of the probabilistic analysis for four-points patterns (Sample scheme)51
Table 5-7: The effect of changing the correlation factor on the represented patterns53
Table 5-8: The effect of changing mesh interval53
Table 5-9: The effect of changing mesh interval for slab dimension (4X7) m53

List of Figure

Figure 3.1: Internal Forces in Slab Element
Figure 3.2: Plastic deformation of An Element
Figure 3.3: The stresses compnents as a result of forces in x and y directions16
Figure 3.4: The idealized moment curvature relationship
Figure 3.5: Stiffness of the loading slab
Figure 3.6: The behavior of the slab under loading
Figure 3.7: The orthotropic and isotropic reinforcement
Figure 3.8: Examples on different patterns
Figure 3.9: The Element of Loaded Slab
Figure 3.10: The Internal Forces at a Yield Line23
Figure 3.11: Procedure to get equivalent internal forces
Figure 3.12: The nodal force values for intersection yield lines with each other and with edge
Figure 4.1: The probability density function of load and resistance29
Figure 4.2: Probability density function of safety margin of random variable Z31
Figure 4.3: The types of systems
Figure 5-1: Procedure flow chart
Figure 5-2: The mechanism of failure patterns of a slab contains twelve edge-discretized points
Figure 5-3: The investigated slab of section 5-7
Figure 5-4: Some of the Generated patterns of example in section 5.7

Nomenclature

β	Reliability index
Ф	Cumulative standard normal distribution function
$Q_x \& Q_y$	The internal shear force per unit length along x and y direction respectively
•	The bending moment in along x and y direction respectively
$M_x \& M_y$	
$M_{xy} \& M_{yx}$	The twisting moment
ω	Plane displacement
$ heta_{\scriptscriptstyle \mathcal{X}}$	The rotation angles about X-axis
$ heta_{y}$	The rotation angles about Y-axis
$\{arepsilon\}$	The total strain
$\{\varepsilon\}^e$	The elastic strain
$\{arepsilon\}^p$	The plastic strain
σ_{ij}	The stress in j direction on the normal surface to i direction
Е	The young's modulus
υ	The passion ratio
D	The bending stiffness
∇	The Laplacian operator
A_s	The area of steel for unit width of the slab
σ_y	The yield stress of steel,
j d	The arm of the internal forces
α	The yield line inclination angle with the reinforcement in X direction
m_1	The reinforcement in X direction
m_2	The reinforcement in Y direction
m	The reinforcement in X &Y direction in isotropic slab
m_b	The ultimate moment per unit width

 m_t The twisting moment per unit width

W The external work

 E_d The dissipated energy

q The lateral load on slab

 l_{ν} The yield line length

 θ The rotational angle of each rigid part about the yield line

Z The safety margin

R The resistance variable

S The load variable

P_f The probability of failure

 $f_{r,s}(r,s)$ The joint probability function of both load and resistance

 $F_R(r)$ The probability density function for resistance

 $F_S(s)$ The probability density function for load

 $f_z(z)$ The probability density of the safety margin

Φ The standard normal distribution function

 μ_z The mean of the random variable Z

 σ_z The standard deviation of the random variable Z

m The number of failure modes

c(m) The vector of reliability indices

x(m) Vector of normal standard correlated normal variables

 $R(m \times m)$ The correlation matrix

 $\varphi(u)$ The standard density function

 β_i The reliability index of component

 β_i The reliability index of component j

z The correlated standard normal variable.

 ρ_0 The demarcating correlation

 ρ_{z_i,z_j} The mutual correlation between each two modes of safety margins z_i, z_j

 σ_{z_i} and σ_{z_j} The standard deviations of safety margins z_i , z_j , respectively