

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Study of IL-10 serum marker and its association with NAFLD in adult Egyptian patients

Thesis Submitted For Partial Fulfillment of Master Degree
In Gastroenterology

Вy

Bishoy Refaat Rassmy Harown M.B.B.Ch.,

Under Supervision of:

Prof. Dr. Hanan Mahmoud Mohamed Badawy

Professor of Internal medicine & Gastroenterology Faculty of medicine – Ain ShamsUniversity

Assist. Prof. Dr. Eslam Safwat Mohamed Abdelaziz

Associate Professor of Internal medicine & Gastroenterology Faculty of Medicine – Ain ShamsUniversity

Dr.Mohamed Magdy Salama

Lecturer of Internal medicine & Gastroenterology Faculty of Medicine – Ain ShamsUniversity

> Ain Shams University Faculty of Medicine 2021

Acknowledgement

First of all, thanks GOD, the merciful, the beneficent for helping me during this work.

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Hanan Mahmoud Mohamed Badawy**, Professor of Internal medicine & Gastroenterology, Faculty of Medicine, *Ain Shams* University for her valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts she devoted in the supervision of this study.

I'll never forget, how co-operative was **Assist. Prof. Dr. Eslam Safwat Mohamed Abdelaziz**, Associate Professor of Internal medicine & Gastroenterology, Faculty of Medicine, *Ain Shams* University, also he was encouraging all the time. It is honorable to be supervised by him.

I would like also, to express my great thanks to **Dr. Mohamed Magdy Salama**, Lecturer of Internal medicine & Gastroenterology, and Faculty of Medicine – *Ain Shams* University. His valuable advises and continuous support facilitated completing this work.

I would like to thank all the staff members of the Internal medicine & Gastroenterology department.

Finally, I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life.

Bishoy Refaat Rassmy Harown

LIST OF CONTENTS

Title	Page
List of Tables	II
List of Figures	III
List of Abbreviations	IV
Abstract	VI
Introduction	1
Aim of the Work	3
Review of Literature	4
Chapter (1): NAFLD history and pathogenesis	4
Chapter (2): Cytokines contribute in pathogenesis	25
Chapter (3): IL 10 history and contribution	32
Chapter (4):NAFLD prevalence and burden in Egypt	41
Patients and Methods	
Results	58
Discussion	89
Summary	100
Conclusion	105
Recommendations	
References	107
الملخص العربي	١

LIST OF TABLES

Table NO.	Table of review	page
(1)	REAGENTS AND MATERIALS PROVIDED	54
	Tables of results	
(1)	Demographic characteristics of both study groups	58
(2)	Prevalence of comorbidities in both study groups	59
(3)	Anthropometric measures in both study groups	60
(4)	Arterial blood pressure in both study groups	61
(5)	Glycemic profile in both study groups	62
(6)	Lipid profile in both study groups	63
(7)	Liver function tests in both study groups	64
(8)	Serum creatinine and platelet count in both study groups	65
(9)	Results of autoantibody screening in both study groups	66
(11)	IL-10 level in both study groups	67
(10)	Receiver-operating characteristics (ROC) curve analysis for the value of IL-10 for discrimination between patients labelled as likely or unlikely to be suffering from NAFLD	68
(12)	Diagnostic value of various IL-10 cut-offs	69
(13)	Correlations of IL-10 with various clinical and biochemical variables in the whole study population as well as in patients labelled as likely or unlikely to have NAFLD	74
(14)	Multivariable binary logistic regression analysis for the relation between IL-6 and NAFLD	88

LIST OF FIGURES

Figure NO.	Figures of review	Page
(1)	The histological spectrum of Nonalcoholic Fatty Liver Disease	5
(2)	Mechanisms involved in the pathogenesis of NAFLD.	8
(3)	Natural history of NAFLD	24
	Figures of results	
(1)	Mean IL-10 level in both study groups. Error bars represent the 95% confidence limits	67
(2)	Receiver-operating characteristics (ROC) curve for discrimination between patients labelled as likely or unlikely to be suffering from NAFLD using IL-10 level	71
(3)	True positive (TP), true negative (TN), false positive (FP) and false negative (FN) rates associated with various IL-10 cutoffs	72
(4)	Sensitivity versus specificity plot for various IL-10 cutoffs.	73
(5)	Scatter plot illustrating the correlation between IL-10 and age within either study group (Group A, blue; Group B, green).	75
(6)	Scatter plot illustrating the correlation between IL-10 and BMI within either study group (Group A, blue; Group B, green).	76
(7)	Scatter plot illustrating the correlation between IL-10 and waist circumference within either study group (Group A, blue; Group B, green).	77
(8)	Scatter plot illustrating the correlation between IL-10 and HSI within either study group (Group A, blue; Group B, green). Markers represent individual observations.	78
(9)	Scatter plot illustrating the correlation between IL-10 and LFS within either study group (Group A, blue; Group B, green).	79
(10)	Scatter plot illustrating the correlation between IL-10 and ALT within either study group (Group A, blue; Group B, green).	80
(11)	Scatter plot illustrating the correlation between IL-10 and AST within either study group (Group A, blue; Group B, green).	81
(12)	Scatter plot illustrating the correlation between IL-10 and total cholesterol within either study group (Group A, blue; Group B, green).	82
(13)	Scatter plot illustrating the correlation between IL-10 and LDL within either study group (Group A, blue; Group B, green).	83
(14)	Scatter plot illustrating the correlation between IL-10 and TAG within either study group (Group A, blue; Group B, green).	84
(15)	Scatter plot illustrating the correlation between IL-10 and fasting insulin within either study group (Group A, blue; Group B, green).	85
(16)	Scatter plot illustrating the correlation between IL-10 and HbA1c within either study group (Group A, blue; Group B, green).	86
(17)	Scatter plot illustrating the correlation between IL-10 and serum creatinine within either study group (Group A, blue; Group B, green).	87

LIST OF ABBREVIATIONS

Abb	Full Term
ALT	alanine aminotransferase
AST	aspartate aminotransferase
BMI	body mass index
CRF2	cytokine receptor family
CSIF	cytokine synthesis inhibitory factor
CT	computed tomography
FF	free fatty
FFA	free fatty acids
GGT	Gamma glutamyl transferase
GIP	glucose-dependent insulin tropic polypeptide
GLP-1	glucagon-like peptide-1
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HDL	High-density lipoprotein
HNE	4-hydroxy-2-trans-nonenal
HSI	Hepatic Steatosis Index
IFN	interferon
IL	interleukin
IR	insulin resistance
LFTs	Liver function tests
LPS	lipopolysaccharide
LT	liver transplantation
MTP	The microsomal triglyceride transfer protein
NAFL	nonalcoholic fatty liver
NAFLD	nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
NK	Nuclear kappa
PPARα	Peroxisome proliferator-activated receptors
ROS	reactive oxygen species
SNPs	single nucleotide polymorphisms
TGF	transforming growth factors
Th2	T-helper cell clones

TNF	tumor necrosis factors
VLDL	very low-density lipoprotein

ABSTRACT

Background; Non-alcoholic fatty liver disease (NAFLD) is commonly associated with obesity and diabetes, and is characterized by insulin resistance (IR) Cytokines and adipocytokines (i.e. mediators mainly derived from adipose tissue) play a major role in the orchestration of inflammatory processes throughout the body, Aim and objectives; To evaluate the relation between serum levels of IL-10 and NAFLD in Egyptian patients, Subjects and methods; This study is A randomized case control cross sectional study, was carried out at Eldemrdash University Hospital, Internal medicine departments, on patients above 18 years old with Hepatic Steatosis Index (HSI) and NAFLD, duration of study about 6 months, **Result**; There was high statistically significant difference between studied cases as regard IL-10, Conclusion; high IL-10 levels limiting the effects of the inflammatory response that is, by counter regulating the effects of pro-inflammatory cytokine so that the protective function of IL-10 in steatotic liver relies on suppression of TNF-a production. Morbidly obese patients with increased age and elevated levels of LDL, fasting glucose, HOMA-IR, and TNF-a, in combination with low circulating levels of IL-10, seem to be at higher risk to develop severe-NAFLD and should be clinically monitored, Keywords; Non-alcoholic fatty liver disease; Tumor necrosis factor alpha; Interleukin-10; Steatohepatitis.

INTRODUCTION

In the last decade, there has been a remarkable scientific effort to improve our understanding of the pathogenesis, diagnosis, and treatment of non-alcoholic fatty liver disease (NAFLD). Clinical studies revealed dramatically high prevalence of NAFLD worldwide [Chen SH et al, 2011- Andersen T et al, 1994]. Worrying data on the prevalence of NAFLD in children and adolescents was also revealed [Manco M et al, 2008]. Importantly, in American adolescents followed in the National Health and Nutrition Examination Survey between 1999 and 2004, serum elevation of hepatic enzymes [i.e. (AST), (ALT)] was observed in 6% to 11% of subjects (depending of ethnicity) [Fraser A et al, 2007]. Furthermore, serum ALT increase was positively associated with waist circumference and insulin resistance, suggesting that NAFLD might be considered as the hepatic manifestation of other epidemic diseases, such as metabolic syndrome and obesity [Chen SH et al, 2011- Andersen T et al, 1994]. In fact, in obese children and adolescents, NAFLD affects about 20% to 74%, indicating that this disease might start early during life, providing more time for its deleterious evolution [Strauss RS et al, 2000 - Chan DF et al, 2004]. Although NAFLD has been described as an increased hepatic accumulation of fat (steatosis), a recent scientific consensus defined it as a complex spectrum of diseases, ranging from asymptomatic steatosis with possible aminotransferase alterations to non-alcoholic steato-hepatitis (NASH), cirrhosis, and also hepatocellular carcinoma [Adams LA et al, 2005 - Angulo P et al, 2002]. Whether these conditions are different stages of a common progressive disease or should be considered as different entities, is still an open question.

Thus, additional pathophysiological studies on improved animal models are needed to clarify this issue. Indeed, NAFLD is often underestimated, under diagnosed, and not treated in the current medical practice; therefore, its pathophysiological history is at risk of remaining a mystery for several years.

At present, the most suitable area for improving our knowledge of the pathophysiology of NAFLD is represented by the chronic inflammation that underlies all NAFLD entities/stages [Tarantino G et al, 2010]. Soluble cytokines and chemokines, regulating inflammatory cell function and survival, could be considered as very promising candidates. On the other hand, hormonal axes, adipocytokines, and growth factors have also received attention from NAFLD scientists..

Aim of the Work

Aim of The Work was to evaluate the relation between serum levels of IL-10 and NAFLD in Egyptian patients

Chapter (1)

NAFLD history and pathogenesis

Definition and spectrum:

Pseudoalcoholic hepatitis, alcohol-like hepatitis, fatty liver hepatitis, steatonecrosis, and diabetic hepatitis are also used to describe nonalcoholic fatty liver disease (NAFLD). NAFLD is the term used to describe the alcohol-like liver injury that occurs in the absence of alcohol abuse and embraces the range of histological abnormalities including simple steatosis or fatty liver (NAFL), non-alcoholic steatohepatitis (NASH) and NAFLD induced cirrhosis (**Figure 1**) (*Byrne & Targher*, 2015).

Although various conditions such as hepatitis C infection, starvation, alcohol abuse and drug toxicity may cause fatty infiltration of the liver, the term NAFLD is reserved for the liver manifestation associated with the metabolic syndrome (*Younossi et al., 2018*).

Two major factors are responsible for the rapid increase in prevalence of this condition; namely increasing obesity and the practice of measuring parameters of liver function before starting statin therapy. Although NAFLD is undoubtedly a common condition, it is still underrecognized and under-diagnosed with much unknown about its natural history, pathogenesis and treatment (*Cusi et al.*, 2017).

NAFLD is subdivided into:

• **Nonalcoholic fatty liver (NAFL):** in which hepatic steatosis is present without evidence of significant inflammation