

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ASSESSMENT OF PORTAL VENOUS AND HEPATIC ARTERY HEMODYNAMIC VARIATION IN NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) EGYPTIANS PATIENTS AND IT'S CORRELATION WITH THE DISEASE SEVERITY

Thesis

Submitted for partial fulfillment of MD degree in Internal Medicine

Presented by

Nourhan Assem Aly Nagy

(M.B., B.Ch) M.Sc, (Internal Medicine)

Supervised by

Prof. Dr. Tarek Mohamed Youssef

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Shaker

Professor of Radiology
Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Manal Sabry

Assistant Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Mohamed Magdy

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Christine Alfons

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine - Ain-Shams University

Faculty of Medicine
Ain Shams University
2021

تقييم تباين ديناميكية الدورة الدموية في الوريد البابي والشريان الكبدي في مرض الكبد الدهني غير الكحولي في المرضى المصريين وارتباط ذلك التباين بشدة المرض

رسالة

توطئة للحصول علي درجة الدكتوراة في أمراض الباطنة العامة مقدمة من

الطبيبة / نورهان عاصم علي

بكالوريوس الطب و الجراحة- ماجستير أمراض الباطنة العامة تحت إشراف

أ.د/طارق محمد يوسف

أستاذ الباطنة العامة و أمراض الجهاز الهضمي كلية الطب- جامعة عين شمس

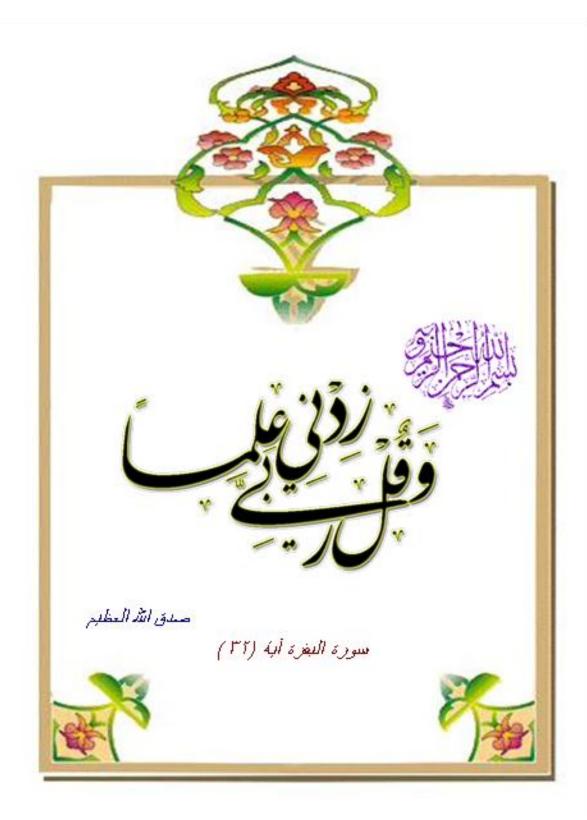
أد/ محمد شاكر غازي

ستاذ الأشعة التشخيصية والتداخلية كلية الطب- جامعة عين شمس

د/منال صبري

أستاذ مساعد الباطنة العامة و أمراض الجهاز الهضمي كلية الطب- جامعة عين شمس

د/محمد مجدي


أستاذ مساعد الباطنة العامة و أمراض الجهاز الهضمي كلية الطب- جامعة عين شمس

دركريستينا ألفونس

مدرس الباطنة العامة و أمراض الجهاز الهضمي كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس

> > 7.71

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Tarek Mohamed Youssef**, Professor of Internal Medicine and Gastroenterology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Mohamed Shaker**, Professor of Radiology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Ass. Prof. Dr. Manal Sabry, Assistant Professor of Internal Medicine and Gastroenterology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Mohamed Magdy,** Lecturer of Internal Medicine and Gastroenterology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Christine Alfons,** Lecturer of Internal Medicine and Gastroenterology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, , for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Ti	Title Pa	
•	List of Abbreviations	I
•	List of Table	III
•	List of Figures	IV
•	Introduction	1
•	Aim of the work	4
•	Review of literature	
	Chapter (1): Non-Alcoholic fatty liver disease	5
	Chapter (2): Liver Doppler Ultrasound	42
•	Patients and methods	60
•	Results	68
•	Discussion	86
•	Summary	99
•	Conclusions	101
•	Recommendations	102
•	References	103
•	الملخص العربي	-

LIST OF ABBREVIATIONS

Abb.	Full term
Alb	: Albumin
ALT	: Alanine aminotransferase
AST	: Aspartate aminotransferase
BMI	: Body mass index
BUN	: Blood urea nitrogen
CAP	: Controlled attenuation parameter
CBC	: Complete blood count
D.Bil	: Direct bilirubin
EDV	: End-diastolic velocity
FBS	: Fasting blood sugar
GGT	: Gamma-glutamyl transferase
HARI	: Hepatic artery resistive index
Hb	: Hemoglobin
HBA1C	: Glucosylated heamoglobin
HDL	: High-density lipoproteins
HS	: Highly significant
INR	: International normalization ration
LDL	: Low-density lipoproteins
MFV	: Mean Flow Velocity
Mhz	: Megahertz
NAFLD	: Non-alcoholic fatty liver disease
NS	: Non-significant
PLT	: Platelet
PSV	: Peak-systolic velocity
S	: Significant
SD	: Standard deviation
SPSS	: Statistical package for Social Science
T.Bil	: Total bilirubin
TE	: Transient elastography
TLC	: Total leucocyte count
US	: Ultrasonography
VLDL	: Very-low-density lipoprotein
Vmax	: Peak maximum velocity

ı

∠List of Abbreviations

Abb.	Full term
Vmin	: Peak minimum velocity
VPI	: Vein pulsatility index

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Demographic data between control and	
	case groups	69
Table (2):	Demographic data between 3 groups of	
	cases	70
Table (3):	Transient elastography between control	
	and case groups	71
Table (4):	Transient elastography between 3 grades	
	of NAFLD	72
Table (5):	Basic laboratory tests between control and	
	case groups	73
Table (6):	Blood sugar between control and case	
	groups	74
Table (7):	Blood sugar between 3 groups of cases	74
Table (8):	Lipid profile between control and case	
	groups	75
Table (9):	Lipid profile between 3 groups of cases	75
Table (10):	Fatty liver index between control and case	
	groups	76
Table (11):	Fatty liver index between 3 groups of	
	cases	77
Table (12):	Doppler indices between control and case	
	groups	78
Table (13):	Doppler indices between 3 grades of	
	NAFLD.	80

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Worldwide distribution of the prevalence	
	of NAFLD	7
Figure (2):	Pathophysiology	8
Figure (3):	Mechanisms by which gut microbiota	
	involved in NAFLD development and	
	progression to NASH	12
Figure (4):	Roles of PNPLA3I148M variant and	
	TM6SF2E167K variant in NAFLD	
	pathogenesis	14
Figure (5):	Histological grading of NAFLD a) grade 1, b)	
	grade 2, c) grade 3	16
Figure (6):	Typical pathology of NASH showing	
	ballooned hepatocytes and foci of	
	inflammatory infiltrates	17
Figure (7):	Typical zone 3 perisinusoidal fibrosis in of	
	the lobule	18
Figure (8):	Significant serum biomarkers in NAFLD	
	diagnosis	24
Figure (9):	A classic sonographic appearance of	
	hepatic steatosis (increased liver	
()	echogenicity relative to the right kidney)	
	Shear wave elastography in NAFLD	29
Figure (11):	Unenhanced CT appearance of NAFLD	
	(hepatic attenuation of 16.75 Hounsfield	
	units (less than 40) and a splenic	20
Fig (4.2).	attenuation of 40.68 Hounsfield units)	
	Contrast-enhanced CT showing fatty liver	31
Figure (13):	Dual-energy CT images for the evaluation	22
Figure /1/1	of liver fibrosis	32
rigure (14):	Hepatic steatosis on magnetic resonance	2.4
	imaging	54

Figure No	Subjects	Page
Figure (15):	`Anatomy of common hepatic artery and	
	hepatic artery proper	43
Figure (16):	Normal hepatic arterial flow direction and	
	waveform	44
Figure (17):	Anatomy of Hepatic veins tributaries	46
Figure (18):	Normal Hepatic veins waveform which is	
	predominantly antegrade flow to the	
	heart	47
Figure (19):	Four components of normal hepatic vein	
	waveform with S, D, α and V waves	49
Figure (20):	Increased pulsatility of hepatic veins	
	waveform in right sided heart failure	50
Figure (21):	Loss of phasicity of hepatic vein waveforms	
	in cirrhotic patient	52
Figure (22):	Anatomy & course of portal vein	53
Figure (23):	Normal portal venous waveform and flow	
	direction	54
Figure (24):	Increased pulsatility of the portal venous	
	waveform in a patient with congestive	
	heart failure	56
Figure (25):	Slow portal venous flow in a cirrhotic	
	patient with portal hypertension with flow	
	velocity less than 16 cm/sec	57
Figure (26):	Main portal vein with Hepatofugal flow in a	
	cirrhotic patient with portal hypertension	
Figure (27):	An aphasic portal vein waveform in patient	
	with Portal vein thrombosis (acute bland	
	thrombus)	59
Figure (28):	The center of right portal vein examined	
_	while the patient in shallow respiration	65
Figure (29):	The Center of main hepatic artery at the	
	hepatic portal hilum	66

£ List of Figures

Figure No	Subjects	Page
Figure (30):	Transient elastography between case and	
	control	71
Figure (31):	Transient elastography between 3 grades	
	of NAFLD	72
Figure (32):	Comparison of fatty liver index between	
	case and control	76
Figure (33):	Fatty liver index between 3 grades of	
	NAFLD	77
Figure (34):	Vmax, Vmin and MFV between cases and	
	control	79
Figure (35):	VPI and HARI between case and control	79
Figure (36):	Vmax, Vmin and MFV between 3 grades of	
	NAFLD	82
Figure (37):	VBI and HARI between 3 grades of NAFLD	82
Figure (38):	Correlation between Vmax and CAP score	83
Figure (39):	Correlation between CAP score and Vmin	83
Figure (40):	Correlation between CAP score and MFV	84
Figure (41):	Correlation between CAP score and VPI	84
Figure (42):	Correlation between CAP score and HARI	85

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is recently considered the leading cause of chronic liver disease worldwide (*Bellentani*, 2017). It is expected that it will become the commonest cause of end-stage liver disease (i.e., cirrhosis and hepatocellular Carcinoma) in the near future and, therefore, the most common indication for liver transplantation (*Younossi*, et al., 2019).

Non-alcoholic fatty liver disease (NAFLD) is defined as macro vesicular steatosis in more than 5% of hepatocytes, in the absence of a secondary cause such as alcohol or drugs. It includes a spectrum of histological lesions ranging from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. (*Koenig*, 2016).

Recent studies proved that liver fibrosis is considered the most important pathological feature of NAFLD, because it is associated with the prognosis of the disease. (*Dulai, et al., 2017*).

Liver biopsy is assumed to be the gold standard tool for the assessment of liver fibrosis; Despite being associated with several drawbacks, including its invasiveness, cost, high sampling error and procedure-related morbidity and mortality. (*Janiec*, et al., 2015).