

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

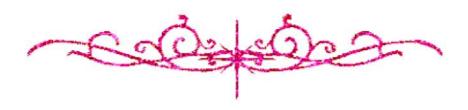
جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Design and Analysis of Microwave Power Dividers/Combiners

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Abd-El Rahman Mohamed Ali Hassan El-Akhdar

B.Sc. of Electrical Engineering Military Technical College, 2003

Supervisors

Prof. / Hadia Mohamed El-Hennawy
Assoc. Prof. / Ayman Mohamed El-Tager

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Electrical Engineering Master of Science in (Electronics

Communications Engineering).

The work included in this thesis was carried out by the author at the

Electronics and Communications Engineering Department, Faculty of

Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any

other university or institution.

Name: Abd-El Rahman Mohamed Ali Hassan El-Akhdar

Signature:

Date:

Curriculum Vitae

Name of Researcher Abd-El Rahman Mohamed El-Akhdar

Date of Birth 18/8/1981

Place of Birth Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Military Technical College

Date of Degree June 2003

List of submitted publications:

- [1] A. M. El-Akhdar, A. M. El-Tager, and H. M. El-Hennawy, "A Novel Design of Quad-Band Equal Power Divider for 3G and 4G Applications," Submitted to IEEE-EuMW2012, European Microwave conference, Amsterdam RAI, The Netherlands, October 28 November 2, 2012.
- [2] A. M. El-Akhdar, A. M. El-Tager, and H. M. El-Hennawy, "Analysis of Coupled Microstrip Lines for Quad-Band Equal Power Dividers/Combiners," Submitted to Journal of Progress In Electromagnetics Research (PIER), 2012.

ABSTRACT

Abd-El Rahman Mohamed Ali El-Akhdar, "Design and analysis of microwave power dividers/combiners" Master of Science dissertation, Ain Shams University, 2012

Key words: Power dividers/combiners, Coupled lines, Multi-band, Microstrip technology.

Most of recent systems require power dividers/combiners that have compact size, low profile and high efficiency as well as capability to be embedded in integrated circuits. Recently, the rapid progress in modern communication systems requires multi-band transceivers as a demand of integrating more than one standard communication system into a single system. Therefore, multi-band microwave power dividers/combiners play an important role in modern communication systems such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunication Systems (UMTS) Bluetooth, IEEE 802.11 Wireless Local Area Networks (WLAN), and IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMax) systems. As a result, the main purpose of this thesis is to study, develop and implement a quad-band power divider/combiner with small size, simple planar structure, and well organized design methodology. Another objective is to propose novel ideas as well as design guidelines to overcome related constraints and challenges.

Based on the conducted literature survey, conventional quad-band techniques which use four cascaded sections of transmission line

transformers are studied. Hence, this thesis proposes quad-band equal power divider/combiner based on coupled microstrip lines. The novel presented technique depends on the replacement of each single band transmission line transformer used in dual-band Wilkinson power divider based on Monzon's technique by its equivalent dual-band transformer based on coupled microstrip lines. The proposed design doesn't need an optimization method, is applicable to higher frequencies according to the usage of only two isolation resistors with reduced values; instead of four larger resistors, and is recording about 20% size reduction compared to conventional quad-band techniques which use four cascaded sections of transmission line transformers. On the other hand, it presents a detailed study of the dual-band transformer based on coupled microstrip lines to obtain a closed form expression for the design parameters and develop design guidelines as well as clear methodology showing design limitations.

The proposed design method is verified through a fabricated prototype of a quad-band equal power divider operates at frequencies of 2.1 GHz, 2.5 GHz, 3.5 GHz, and 3.8 GHz. The operating frequencies are applicable for 3G and 4G applications such as; WiMax and UMTS receivers. The final design is implemented on low loss Teflon substrate (RT/Duroid 6010) with dielectric constant of 10.5 and height 1.25 mm. The design is simulated using Advanced Design System (ADS) from Agilent. The proposed design provides a compact area of 55 x 30 mm². The measured input return loss is better than (11 dB) at the four operating frequencies. The measured insertion loss is better than (0.6 dB). The measured isolation is better than (15 dB) at the four operating frequencies. Very good agreement between measured and simulated results is achieved, which verifies the novel design idea as well as the proposed design methodology.

ACKNOWLEDGEMENT

All gratitude to ALLAH

I would like to thank Prof. Dr. Hadia El-Hennawy for giving me the chance to work under her supervision and for helping me in targeting this field. Special thanks are due to Assoc. Prof. Ayman El-Tager for his fruitful discussions and patience with me and the full time co-operation he showed.

I would like also to express my deep gratitude to Military Technical College team for supporting me in the fabrication and measurement processes.

I would like also to thank my leader and commander in the Air Defense Forces Col. Anas El-Bendary. Thanks you for your care and truthful help. I would like to thank also my colleagues; Dr. Mohammed Omar, Col. Ahmed Fathy, and Maj. Ismail Kamal for supporting me.

Special thanks to my family members for their support and patience. I would like to thank my father, Mohamed El-Akhdar, who I consider the greatest father in the world. Thanks to my wife and daughter, Youmna and Lina for helping me to accomplish this work. Thanks also to my sisters, Dr. Ghada and Dr. Mayada for their support. I would like to present this thesis especially to my mother, Salwa Ezz El-Din, who makes this person who writes this thesis and reaches this successful step in my life.

CONTENTS

LIS	T OF F	IGURE:	S	••••••	••••••	•••••	•••••	III
LIS	T OF T	ABLES	•••••	••••••	••••••	•••••		VII
LIS	T OF S	YMBOI	_S		•••••	•••••		Viii
LIS	T OF A	BBREV	TATIONS		•••••	•••••	••••••	i x
СН	APTER	1: INT	RODUCTIO	N	•••••	••••	••••••	9
1.1	(Overview						
1.2	N	Main Objective						11
1.4	Т	THESIS O	RGANIZATIO	V				11
СН	APTER	2:	SURVEY	ON	MICROW	AVE	POWER	
DIVID	ERS/CC	MBINI	ERS			•••••		13
2.1	(CLASSIFI	CATION OF M	ICROWAV	E POWER DIV	IDERS/CC	MBINERS	14
	2.1.1	Reson	ant					15
	2.1.2	Non-F	Resonant					18
	2.1.3	Spatia	<i>l</i>					27
	2.1.4	Combin	ned Combine	r				27
2.2	M	IAIN RES	EARCH TRENI	os				28
	2.2.1	High _I	power applica	ationS				29
	2.2.2	Size r	eduction					29
	2.2.3	Ultra-	-wide Band					35
	2.2.4	Multi-	-band					37
2.3	C	ONCLUS	SION					39
СН	APTER	3: ANA	LYSIS OF I	DUAL-B	AND TRAN	SFORM	ERS	41
3.1	I	NTRODU	CTION					41

3.2	MATHEMATICAL ANALYSIS OF DUAL-BAND TRANSFORMERS	45					
3.2.1 Dual-band transformers based on Monzon's theory							
3.2.2 Dual-band transformers based on coupled microstrip lines							
3.3	GENERAL EXPRESSION.	56					
3.4	NOVEL CLOSED FORM EXPRESSION	58					
3.5	PARAMETRIC ANALYSIS	61					
	3.5.1 Variation of Frequency ratio	61					
	3.5.2 Separation between coupled lines	64					
	3.5.3 Choice of branch line impedance Z_m	65					
3.6	CONCLUSION.	67					
	APTER 4: NOVEL QUAD-BAND POWER DIVIDER BASED DUPLED MICROSTRIP LINES	69					
4.1	Introduction	69					
4.2	DESIGN STEPS	70					
4.3	DESIGN AND SIMULATION OF THE PROPOSED PROTOTYPE	73					
	4.3.1 Initial Design of Quad-Band Power Divider	75					
	4.3.2 Optimized quad-Band Power Divider	77					
4.4	MEASUREMENTS AND EXPERIMENTAL RESULT	80					
4.5	COMPARISION TO OTHER PUBLICATIONS	84					
4.6	Conclusion	87					
СН	APTER 5: CONCLUSIONS & RECOMMENDATIONS	89					
5.1	Conclusion	90					
5.2	RECOMMENDATION AND FUTURE WORK	91					
RE	FERENCES	92					
Appen	dix A: Power dividers/combiners properties	101					
Appendix B: Flow chart presenting the design steps							

List of Figures

Figure 2.1 Classification of microwave power dividers/combiners	1.4
	14
Figure 2.2 X-band HiPac power combiner with 32 diodes	16
Figure 2.3 Passive coaxial waveguide combiner	17
Figure 2.4 Rat-race coupler using CSRR	18
Figure 2.5 Two-way Wilkinson power divider	19
Figure 2.6 In-phase power divider	20
Figure 2.7 Ten-way conical power combiner	21
Figure 2.8 layers of T-junction with enhanced bandwidth	22
Figure 2.9 Microstrip disk combiner	23
Figure 2.10 Sectorial combiner	24
Figure 2.11 six port turnstile wave guide junction	24
Figure 2.12 Miniaturized Branch line coupler	25
Figure 2.13 Rat-race coupler based on CSRR	26
Figure 2.14 Ten element antenna array based on Wilkinson power divider	28
Figure 2.15 CRLH DB WPD prototype using SMT chip components	30
Figure 2.16 4:1 unequal WPD utilizing DGS	31
Figure 2.17 Unequal WPD with EBG CPW	32
Figure 2.18 Fractal shape four branch couplers	33
Figure 2.19 Die photograph of miniaturized Wilkinson power divider	34
Figure 2.20 Four-way SIW power divider/combiner	35
Figure 2.21 UWB power divider based on signal Interference Technique	36
Figure 2.22 UWB power divider employing double Wireless Via	36
Figure 2.23 Dual band port power divider for high frequency suppression	38
Figure 2.24 Tri-band using Non-Uniform TLs	38
Figure 2.25 Quad-band using Non-Uniform TLs	39
Figure 3.1 Two section dual-band transformer	42
Figure 3.2 Dual-Band WPD based on Monzon's theory	43
Figure 3.3 Dual-band WPD utilizing open stubs	43

Figure 3.4 Dual-band WPD utilizing open and short stubs	4.4
Figure 3.5 Dual-band WPD based on coupled lines	44
•	44
Figure 3.6 Dual-band transformers based on cascaded sections	45
Figure 3.7 Dual-band WPD based on cascaded section of TLTs	49
Figure 3.8 Dual Band transformer based on CLs	51
Figure 3.9 (i) Dual-band transformer based on CLs, (ii) its equivalent circuit	52
Figure 3.10(i) Even mode half circuit (ii) its equivalent circuit	53
Figure 3.11(i) odd mode half circuit (ii) its equivalent circuit	54
Figure 3.12(a) Coupled lines Characteristic impedances (Zev and Zod), (b)	
Realization Coefficient q versus frequency ratio Fr at different values of Zm	62
Figure 3.13 Realization coefficient (q) versus frequency ratio at different	
values of Zm	63
Figure 3.14 Realization coefficient (q) versus separation between coupled	
lines (S')	64
Figure 3.15 Realization coefficient (q) versus normalized branch impedance	
Zm at different frequency ratios Fr	66
Figure 3.16 Variation of Zne and Zno with ZN at different values of Zm	67
Figure 4.1 Quad-band power divider based on coupled microstrip lines	71
Figure 4.2 Frequency line indicator	72
Figure 4.3 Schematic of the proposed quad-band power divider lines	75
Figure 4.4 Simulated performance of quad-band power divider	67
Figure 4.5 Layout of quad-band power divider	77
Figure 4.6 Schematic of the proposed quad-band power divider	78
Figure 4.7 Simulated performance of power divider	79
Figure 4.8 Layout of the proposed quad-band power divider	79
Figure 4.9 Fabricated quad-band power divider	80
Figure 4.10 Simulated and Measured Return loss	81
Figure 4.11 Simulated and measured Insertion and Isolation	82
Figure 4.12 Measurement process using VNA HP8510	83
Figure 4.13 Quad-band equal power divider presented by N. Dib	85
Figure 4.14Conventional equal power divider utilizing curved TLTs	85
Figure 4.15 Layout of quad-band power divider based on this work	86