

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Prognostic Value of Platelet-To-Lymphocyte Ratio among Septic Patients with Acute Kidney Injury (A Prospective Cohort Study)

Thesis

Submitted for Fulfillment of Master Degree in **General Critical Care**

By

Michael Safwat Karim

M.B.B.ch (2013)

Supervised by

Prof. Dr. Basel Mohammed Essam Nour-Eldin

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Ihab Hamed Abd-Elsalam

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Thabet Aziz Nasr

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and Drof. profound gratitude toDr. Mohammed Essam Nour-Eldin, Professor of Anesthesia and Intensive Care - Faculty of Medicine- Ain ShamsUniversity for his keen guidance, advice supervision, valuable and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Thab Thamed Abd-Elsalam, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Thabet**Aziz Masr, Lecturer of Anesthesia and Intensive Care,
Faculty of Medicine, Ain Shams University, for his great
help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Michael Safwat Karim

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literater	
Sepsis	4
Acute Kidney Injury	
Lymphocyte	29
Platelets	33
Platelet to Lymphocyte Ratio (PLR)	35
Patients and Methods	37
Results	41
Discussion	57
Summary	60
Conclusion & Recommendations	62
References	63
Arabic Summary	

List of Tables

Table No.	Title Pa	ge No.
Table (1):	Sequential Organ Failure Assessment (SO SCORE)	
Table (2):	Surviving Sepsis Guidelines 2017	19
Table (3):	AKI according to RIFLE criteria	21
Table (4):	Comparison between PLR <90 and PLR according to their demographic data regarding and sex	age
Table (5):	Comparison between PLR <90 and PLR > according to their co-morbidities	>90
Table (6):	Comparison between PLR <90 and PLR > according to their clinical condition	
Table (7):	Comparison between PLR <90 and PLR > according to their laboratory data	
Table (8):	Comparison between PLR <90 and PLR > according to their ventilation	
Table (9):	Comparison between PLR <90 and PLR > according to their prognosis	
Table (10):	Correlation between Platlets to lymphocyte ratio vall parameters, using Pearson Correlation Coefficient all patients	ient
Table (11):	Relation between Platlets to lymphocyte ratio w needed of mechanical ventilation, in all patients	
Table (12):	Relation between Platlets to lymphocyte ratio w mortality rate%, in all patients	

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Bar chart between PLR <90 and PLR according to their demographic data reg age	arding	42
Figure (2):	Bar chart between PLR <90 and PLR according to their demographic data reg sex	R >90 arding	
Figure (3):	Bar chart between PLR <90 and PLR according to their co-morbidities	R >90	
Figure (4):	Bar chart between PLR <90 and PLR according to their clinical condition		46
Figure (5):	Bar chart between PLR <90 and PLR according to their laboratory data		48
Figure (6):	Bar chart between PLR <90 and PLR according to their ventilation		49
Figure (7):	Bar chart between PLR <90 and PLR according to their prognosis		50
Figure (8):	Scatter plot between Platelets to lymphratio with pH in all patients		52
Figure (9):	Scatter plot between Platelets to lymphratio with HCO3 in all patients	•	52
Figure (10):	Scatter plot between Platelets to lymphratio with PO2 in all patients	_	53
Figure (11):	Parito chart showing relation between Plat lymphocyte ratio with needed of mech ventilation, in all patients	nanical	54
Figure (12):	Parito chart showing relation between Plat lymphocyte ratio with mortality rate%, patients	in all	56

List of Abbreviations

Abb.	Full term
ABG	.Arterial Blood Gas
	.Acute Kidney Injury
	. Acute Physiological and Chronic Health Evaluation II Score
ARDS	.Acute Respiratory Distress syndrome
	.Acute Tubular Necrosis
<i>ATP</i>	.Adenosine Triphosphate
	.Bone marrow- or bursa-derived cells
<i>BP</i>	.Blood Pressure
C. jejuni	. Campylobacter Jejuni
<i>CBC</i>	. Complete Blood Count
CD4	. Cluster of differentiation 4
<i>CKD</i>	. Chronic Kidney Disease
CNS	. Central Nervous System
<i>CRP</i>	.C-Reactive Protein
<i>CSF</i>	. Cerebro-Spinal Fluid
CT scans	. Computed Tomography Scans
CVP	. Central Venous Pressure
<i>CXR</i>	. Chest X-ray
<i>DBP</i>	.Diastolic Blood Pressure
<i>DIC</i>	$. Disseminated\ Intravascular\ Coagulation$
E. coli	. Escherichia Coli
<i>ECG</i>	. Electro-Cardiography
<i>ED</i>	.Emergency Department
GCS	. Glasgow Coma Score
<i>GFR</i>	. Glomerular Filtration Rate
H. pylori	. Helicobacter Pylori
H.influenza	. Haemophilus Influenza
<i>Hb</i>	. Hemoglobin

List of Abbreviations (Cont...)

Abb.	Full term
HIV	. Human Immunodeficiency Virus
HR	•
	Intensive Care Unit
<i>IL</i>	
<i>IV</i>	
	.Mean Arterial Blood Pressure
	. Major histocompatibility complex
	. Minimum-Maximum
MRI scans	. Magnetic Resonance Imaging Scans
NK	
PaCO ₂	Partial Pressure of Carbon dioxide in Arterial
	Blood
PaO_2	Partial Pressure of Oxygen in Arterial Blood
<i>PLR</i>	.Platelet To Lymphocyte Ratio
<i>RBCs</i>	.Red~Blood~Cells
RIFLE	.(Risk-Injury-Failure-Loss-End stage) consensus criteria to define the incidence of AKI
<i>RR</i>	. Respiratory Rate
S. typhi	.Salmonella Typhi
<i>SBP</i>	. Systolic Blood Pressure
$ScvO_2$	Central Venous Oxygen Saturation
	.Standard Deviation
SIRS	. Systemic Inflammatory Response Syndrome
	Sequential Organ Failure Assessment
T cells	_
	. Tumor Necrosis Factor

List of Abbreviations (Cont...)

Abb.	Full term	
<i>UK</i>	United Kingdom	
<i>US</i>	Ultra-Sonography	
<i>UTI</i>	Urinary Tract Infection	
<i>WBCs</i>	White Blood Cells	

INTRODUCTION

Ridney is one of the most affected organs by sepsis causing acute kidney injury (AKI).

Sepsis is a major cause of morbidity and mortality worldwide, and it results from a dysregulation of the systemic inflammatory response to infection (*Vincent*, 2015; Cohen et al., 2015). Despite significant advances in the pathophysiology and therapeutic strategies for sepsis (Angus and van der Poll, 2013) the mortality remains high, at 300 deaths per 100 000 people (Peake et al., 2014).

An extremely complex systemic expression of inflammatory and anti-inflammatory response plays a critical role in the pathophysiological process of sepsis, which is strongly associated with an increased risk of mortality (*Pierrakos and Vincent*, 2010). Identifying patients who are at a high risk of poor outcomes, in the early stage of sepsis, is vital for timely and adequate intervention (*Vincent et al.*, 2014).

While a significant amount of effort has been put into investigating promising biomarkers, the challenge of identifying these at risk patients remains.

In recent years, studies have reported that platelets and lymphocytes play critical roles in the inflammatory process.

Therefore, the platelet-to-lymphocyte ratio (PLR)-a novel inflammatory factor-has received research attention recently, as it may act as an indicator of inflammation in a wide spectrum of diseases, such as myocardial infarction (Hudzik et al., 2017), acute kidney injury (AKI) (Zheng et al., 2017), hepatocellular carcinoma and non-small cell lung cancer (Toda et al., 2018).

AIM OF THE WORK

It is reasonable to speculate the presence of a potential relationship between PLR and mortality for sepsis. However, no investigation has been conducted. Therefore, in this study, we aimed to investigate the prognostic value of PLR among septic patients with acute kidney injury.