

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Muscle wasting assessed by ultrasound versus scoring systems as early predictor of outcomes of intensive care unit stay in critically ill patients

Thesis

Submitted for Partial Fulfilment of the Master Degree in Intensive Care

By

Amr Badawy Mahmoud Badawy Elkolfat

M.B.B.Ch (Alexandria University, 2014)

Under Supervision of

Prof Dr. Ahmed Ali Fawaz

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Salwa Omar El khattab Amin

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Hany Magdy Fahim Hana

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Ahmed Ali Fawaz**, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Salwa Omar El khattab Amin**, Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for her continuous directions and support throughout the whole work.

I would like also to thank Prof. Dr. Hany Magdy Fahim Hana Lecturer of Critical care medicine, unlimited guidance, continuous encouragement and valuable advice that helped me to produce this work in a presentable form. Without his continuous help this work would never have been accomplished.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Amr Badawy Mahmoud Badawy Elkolfat

List of Contents

Title	Page No.
List of Tables	
List of Figures	iv
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Review of Literature	5
Patients and Methods	29
Results	39
Discussion	84
Limitations of the Study	95
Summary	96
Conclusion	98
Recommendations	100
References	١٠1
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	LODS, Logistic Organ Dysfunction MODS, Multiple Organ Dysfunction SOFA, Sequential Organ Dysfunction	on Score;
Table (2):	Diagnostic criteria for ICUAW	14
Table (3):	MRC score	14
Table (4):	Correlation between sex and me percent of daily reduction of studied	
Table (5):	Maximum percent of daily redustudied muscles in correlation with a	
Table (6):	Baseline characteristic table	43
Table (7):	Distribution of ICU outcomes	44
Table (8):	Relation between Mortality with disease parameters	
Table (9):	Relation between mortality and memory percent of the daily reduction of muscles	studied
Table (10):	Descriptive analysis for those who a 26) for studied muscles	
Table (11):	Relation between mortality with me percent of daily improvement of muscles	studied
Table (12):	Agreement (sensitivity, specificity, NPV) for of daily reduction to properly for studied muscles	PPV and predicate
Table (13):	Agreement (sensitivity, specific relation between SOFA, APACHE RFCSA daily and total reduction	II and
Table (14):	Relation between 28 days' mortal maximum percent of daily redustudied muscles	ity with ction of

List of Tables Cont...

Table No.	Title	Page No.
Table (15):	Correlation between maximum pedaily reduction of studied muse outcome parameters	cles and
Table (16):	Correlation between maximum per shortage from original thickness or muscles and outcome parameters	f studied
Table (17):	Relation between pneumonia and n percent of daily reduction percent of muscles	of studied
Table (18):	Relation between renal disease maximum percent of daily redustudied muscles	iction of
Table (19):	Correlation between SOFA with pedaily reduction of studied muscles	
Table (20):	Correlation between SOFA occurring day of maximum value of daily reduction and muscle daily reduction	muscular
Table (21):	Correlation between the maximum reductions occurring in the day of n SOFA with corresponding maximum	naximum
Table (22):	Correlation between maximum pedaily reduction of studied muse APACHE on admission	cles and
Table (23):	Correlation between maximum pedaily reduction in QMT, RFC diaphragm	SA and
Table (24):	Correlation between maximum per total reduction in muscle mass in diaphragm	ercent of QM and
Table (25):	Relation between Minimum of D different disease parameters	TF with

List of Tables Cont...

Table No.	Title	Page No.
Table (26):	Correlation between DTF and depercent of duration of mechanical veduring stay in ICU	ntilation
Table (27):	Correlation between the minimum and length of ICU and hospital stay	
Table (28):	Relation between minimum of e with mortality	
Table (29):	Correlation between minimum of e (n = 70)	
Table (30):	Relation between weaning of M maximum percent of studied measurements during SBT of DTF a	muscles,
Table (31):	Agreement (sensitivity, specificity NPV) in weaning of MV	•
Table (32):	Correlation between Maximum per studied muscles, the minimum of and the outcome parameters	DTF/DE

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Mechanisms implicated in development of ICUAW	
Figure (2):	Diagnostic criteria for ICUAW	15
Figure (3):	Overview of short-term and lor consequences of ICU-acquired wea	U
Figure (4):	Ultrasound of the quadriceps muscle	
Figure (5):	The muscle layer thickness deterultrasound	
Figure (6):	The muscle ultrasound pennation a	angle 22
Figure (7):	A. M- Mode showing diaphra excursion. B. B- Mode s diaphragm thickening fraction	showing
Figure (8):	Ultrasound of the quadriceps	32
Figure (9):	Showing the muscle thickness w probe perpendicular to the muscle	
Figure (10):	Showing illustrative image diaphragm across the thoracic wall	
Figure (11):	Ultrasonographic approach of the and left hemidiaphragms	•
Figure (12):	The demographic data of the patithe study	
Figure (13):	Correlation between mortality different disease parameters	
Figure (14):	Correlation between mortality maximum percent of the daily redu	
Figure (15):	Correlation between mortality maximum of daily improvement	
Figure (16):	ROC curve to predicate mortality	54

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (17):	Correlation between maximum daily reduction and percent of agent free period in stay (VAFP	vasoactive
Figure (18):	Correlation between maximum daily reduction and dur mechanical ventilation in %(D) in ICU	ration of MVP) stay
Figure (19):	Correlation between maximum daily reduction and dur mechanical ventilation in day during stay in ICU	ration of s (DMVD)
Figure (20):	Correlation between maximum daily reduction and Length of I survivals	CU stay of
Figure (21):	Correlation between maximum daily reduction Length of hospi survivals	ital stay of
Figure (22):	Correlation between maximum daily reduction in muscle ma and diaphragm.	ass in QM
Figure (23):	Correlation between maximum daily reduction in muscle ma and diaphragm	ass in QM
Figure (24):	Correlation between DTF and percent of Duration of reventilation during stay in ICU.	nechanical
Figure (25):	Correlation between Minimum 70)	
Figure (26):	ROC curve to predicate weaning	

List of Abbreviations

Abb.	Full term
λ	Wave length
	. Arterial blood gases
	.Acute Physiology and Chronic Health Evaluation
	.Chronic kidney disease
	.Critical illness myopathy
	Critical illness neuromyopathy
	Critical illness polyneuropathy
	.Compound muscle action potential
	.Central nervous system
	.Chronic Obstructive Pulmonary disease
	.Cross-sectional area
	.Computed tomography
	.Cerebrovascular strokes
	Diaphragmatic dysfunction
	Diaphragmatic excursion
	Diabetic foot infection
DM	
	Duration of mechanical ventilation in days
	Duration of mechanical ventilation in percent
	Diaphragmatic thickness fraction
	Diaphragmatic thickness in end-expiration
	Diaphragmatic thickness in end-inspiration
Fig	
_	Fraction of inspired oxygen
	.Glasgow Coma Scale
	.Gastrointestinal hemorrhage
H&N	_
	.Mean arterial bicarbonate concentration
HI	
HR	· -

List of Abbreviations Cont...

Abb.	Full term
ICU	.Intensive care unit
ICUAW	.Intensive care unit acquired weakness
K	.Potassium
LODS	.Logistic Organ Dysfunction Score
MODS	.Multiple Organ Dysfunction Score
MPM	.Mortality Probability Model
MR	.Magnetic resonance
MV	.Mechanical ventilation
Na ⁺	.Sodium
NPV	.Negative predictive value
O_2	.Oxygen
PaCO ₂	.Partial pressure of carbon dioxide
PaO ₂	.Partial pressure of oxygen
PMV	.Prolonged mechanical ventilation
PPV	.Positive predictive value
QMT	.Quadriceps muscle thickness
RFCSA	.Rectus femoris cross sectional area
ROC	.Receiver operating characteristic
SBT	.Spontaneous breath trial
SOFA	.Sequential Organ Failure Assessment
Temp	.Temperature
US	.Ultrasound
UTI	.Urinary tract infection
VAFP	.Vasoactive agent free period
	.Ventilator acquired pneumonia
VI	.Vastus intermediusmuscle
WBC	.White blood cells
WHO	.World Health Organization

Introduction

Ithough there was an increase in the severity index of critical illnesses from the last century to the new one, the mortality had relatively decreased 35% from 1988 to 2012 with increase in discharge to other health care facilities instead of home.

Disease specific mortality decrease was mostly noticed in cases of decompensated heart failure followed by community acquired pneumonia, subarachnoid hemorrhage (Zimmerman et al., 2006).

This increases the need for efficient mortality prediction tools.

Mortality prediction scores are abundant they are either disease-specific (e.g., CURB score for pneumonia) or general (e.g., APACHE score), yet physician estimates might be more sensitive than the mortality prediction scores.

Available scores are numerous, the most famous are:

- 1. APACHE II (Acute Physiology and Chronic Health Evaluation) score presented in 1985 and being used till now (Salluh and Soares, 2014).
- 2. SOFA (Sequential Organ Failure Assessment (Sawicka et al., 2014).
- 3. SAPS II (Simplified Acute Physiology Score).