

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ultrasound Guided Percutaneous Tracheostomy versus Conventional Tracheostomy; Technique and Outcome

Thesis

Submitted for Fulfillment of the Master Degree in Critical Care Medicine

Presented by

Ahmed Yassin Abbas Elbatsh

M.B.B.Ch. Alexandria University

Under supervision of

Prof. Dr. Naglaa Mohammad Aly

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Heba Abdel Azim Labib Ahmed

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Wael Abdelmenem Mohamed

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really, I can hardly find the words to express my gratitude to **Prof. Dr. Naglaa Mohammad Aly**, Professor of Anesthesiology, intensive care and Pain Management, faculty of medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Heba Abd Elazem Labib Ahmed,** Assistant Professor of Anesthesiology, intensive care and Pain Management, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

Really, I can hardly find the words to express my gratitude to **Dr. Wael Abdel Menem Mohamed**, Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate his patience and support.

Finally, I dedicate this work to My Family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed. Also, my colleagues who did not leave any chance to help.

Ahmed Yassin Abbas Elbatsh

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	
Aim of the Work	4
Review of Literature	5
Patients and Methods	57
Results	74
Discussion	97
Summary	103
Conclusion	108
Recommendations	109
References	110
Arabic Summary	

List of Abbreviations

Abb. Full term
ABP Arterial Blood Pressure
APACHE Acute Physiology And Chronic Health Evaluation
BC Before Christ
BDT Balloon Dilation Tracheostomy
BP Blood Pressure
COPD Chronic Obstructive Pulmonary Disease
CTComputed Tomographic
DM Diabetes Mellitus
ECG Electrocardiogram
ET Eustachian Tube
ETCO2 End Tidal Carbon Dioxide
ETT Endotracheal Tube
FiO2 Fraction of Inspired Oxygen
GCS Glasgow Coma Scale
GWT Guidewire Dilating Forceps Tracheostomy
HTN Hypertension
ICU Intensive Care Unit
INR International Normalized Ratio
IV Intravenous
LMA Laryngeal Mask Airway
MAP Mitogen-Activated Protein
MAP Mean Arterial Blood Pressure
MDT Multiple Dilator Tracheostomy
MV Mechanical Ventilation
OST Open Surgical Tracheotomy

List of Abbreviations Cont...

Abb.	Full term
PaO2	. Pressure Of Arterial Oxygen
PCDT	. Pharmacomechanical Catheter Directed Thrombolysis
PDT	. Percutaneous Dilatation Tracheostomy
PEEP	. Positive End-Expiratory Pressure
RDT	. Rotational Dilation Tracheostomy
RT	. Rotational Technique
S.D	. Standard Deviation
SSDT	. Single-Step Dilation Tracheostomy
STD	. Single Tapered Dilator
TIF	. Tracheo-Innominate Artery Fistula
TLT	. Translaryngeal Tracheostomy
US	. Ultrasound
VAP	. Ventilator-Associated Pneumonia

List of Tables

Table No.	Title F	Page No.
Table (1): Table (2):	Indication for tracheostomy Potential benefits of tracheostomy prolonged endotracheal intubation	over
Table (3):	Late tracheostomy complication	33
Table (4):	Comparison between the two str groups according to sex	
Table (5):	Comparison between the two str groups according to age	
Table (6):	Comparison between the two str groups according to number of puncture	
Table (7):	Comparison between the two structures according to insertion time total time of insertion.	and
Table (8):	Comparison between the two str groups according to mean heart before, during and after the procedure	rate
Table (9):	Comparison between the two structures according to MAP during procedure.	the
Table (10):	Comparison between the two structures according to O2 saturation de the procedure	uring
Table (11):	Comparison between the two structures according to End Tidal Co2 de the procedure	uring
Table (12):	Comparison between the two structures according to PaO ² before and the procedure	udied after

List of Tables Cont...

Table No.	Title	Page No.
Table (13):	Comparison between the two groups according to PaCO2to Bet After the procedure.	fore and
Table (14):	Comparison between the two groups according to perio complications.	perative
Table (15):	Comparison between the two groups according to early complicate	
Table (16):	Comparison between the two groups according to late complication	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The trachea extends from th cartilage at the level of C6-C7	
Figure (2):	Relationships of trachea surrounding structures to the the level of T4-T5	to the carina at
Figure (3):	Dissection through the provisceral fascia exposing the organs	retracheal midline
Figure (4):	The thyrocervical trunk, a direct the aorta, emits the inferior artery, and this tracheoesophageal branches in the cranial portion	r thyroid originates ourishing
Figure (5):	Submucous capillary plexus form tracheoesophageal branches inset the intercartilaginous membran rings.	ned by the erted into nes of the
Figure (6):	Innervation of the larynx and tra	
Figure (7):	Structural relationships with the	
Figure (8):	Durham Flexible Pilot (in Lobster tail	ntroducer)
Figure (9):	Anatomic locations of late trac	
Figure (10):	Ciaglia serial dilatational kit	41
Figure (11):	PercuTwist® kit with a rotation dilator	
Figure (12):	Ambesh's T-Trach percentracheostomy introducer	
Figure (13):	Percutaneous tracheostomy Griggs® forceps; note the hole in the forceps for guide wire attach	kit with the tip of

List of Figures Cont...

Fig. No.	Title Page No.
Figure (14): Figure (15): Figure (16):	Fantoni Translaryngeal Tracheostomy kit 46 Balloon dilatational tracheostomy kit 47 Diagram of a bronchoscopy being performed
Figure (17):	Sonographic evaluation of neck anatomy Transverse (a) and oblique transverse view (b) at the level of the suprasternal notch (SSN)
Figure (18):	Ciaglia Blue Rhino® (Cook®) tracheostomy kit with a single progressive dilator in rhino horn format and the three introducers of differently-sized cannulae in the middle
Figure (19):	Ultrasound machine (Toshiba 35A-590A) 68
Figure (20):	Comparison between the two studied groups according to sex
Figure (21):	Comparison between the two studied groups according to age76
Figure (22):	Comparison between the two studied groups according to number of puncture 78
Figure (23):	Comparison between the two studied groups according to insertion time
Figure (24):	Comparison between the two studied groups according to total time of insertion 80
Figure (25):	Comparison between the two studied groups according to pulse during the procedure
Figure (26):	Comparison between the two studied groups according to MAP during the procedure

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (27):	Comparison between the two groups according to O2 saturation the procedure	n during
Figure (28):	Comparison between the two groups according to O2 saturation the procedure	n during
Figure (29):	Comparison between the two groups according to End Tidal Coathe procedure	2 during
Figure (30):	Comparison between the two groups according to End Tidal Coathe procedure	2 during
Figure (31):	Comparison between the two groups according to Pao2 before, and after the procedure	, during
Figure (32):	Comparison between the two groups according to Pao2 before, and after the procedure	studied , during
Figure (33):	Comparison between the two groups according to PaCO2 before and after the procedure	studied , during
Figure (34): (Comparison between the two studied according to PaCO2 before, durafter the procedure	l groups ing and
Figure (35):	Comparison between the two groups according to period complications	studied perative
Figure (36):	Comparison between the two groups according to early complica	studied
Figure (37):	Comparison between the two groups according to late complicati	studied

Introduction

racheostomy is not a new medical procedure. It has been reported to have been performed as early as 3600 before Christ (BC) based on Egyptian artifacts. In the 4th century BC, Alexander the Great was given credit for saving a soldier's life by using the tip of his sword to create an opening in the neck (Szmuk et al., 2008).

It is a procedure that has evolved over many hundreds of years. In the 21st century, the majority of tracheostomies are now inserted by the intensivists in the intensive care unit (ICU) (Avery and Jankowski, 2021).

As a consequence, the incidence of tracheostomy in the critical care population is increasing. The emergence of percutaneous tracheostomy has further increased the number of tracheostomies performed and encouraged their use earlier in the course of an ICU stay. Some of the advantages over surgical tracheostomies are better resource utilization, cost savings, quicker time to perform and decreased risk of procedural complications (Pandian et al., 2019).

Prolonged mechanical ventilation is associated with prolonged stays in the (ICU), higher costs, and increased morbidity and mortality (Loss et al., 2015).