

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

The comparison of procalcitonin guidance in administration of antibiotic with empirical antibiotic therapy in critically ill patients with SIRS admitted in intensive care unit

Thesis

Submitted for partial fulfillment of MD Degree in General, Intensive Care

By

Ahmed Eid El Ghazaly

(M.B. B. Ch., M. Sc) Faculty of Medicine - Ain Shams University

Under supervision of

Prof. Dr. Bahaa El Deen Ewis Hasan

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Nagah El Shaer

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Rania Magdi Ali

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really, I can hardly find the words to express my gratitude to *Prof. Dr. Bahaa El Deen Ewis Hasan*, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to *Prof. Dr. Ahmed Nagah El Shaer*, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for his continuous directions and support throughout the whole work.

My profound thanks and deep appreciation to *Dr. Rania Magdi Ali*, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for her continuous directions and meticulous revision throughout the whole work. I really appreciate her patience and support.

Really, I can hardly find the words to express my gratitude to *Dr. Sherif Essam Shabaan*, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for his continuous directions and meticulous revision throughout the whole work. I really appreciate her patience and support.

Also, I would like to express my great thanks to *Dr. Maha Sadek El Derh*, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for her great support, patience and continuous help throughout this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

CONTENTS

Title	Page
LIST OF TABLES	I
LIST OF FIGURES	II
LIST OF ABBREVIATIONS	III
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	
Chapter I: Systemic Inflammatory Response Syndrome	4
Chapter II: Procalcitonin (PCT)	12
PATIENTS AND METHODS	28
RESULTS	33
DISCUSSION	39
SUMMARY	46
CONCLUSION & RECOMMENDATIONS	49
REFERENCES	50
ARABIC SUMMARY	Í

LIST OF TABLES

No	Title	Page No	
Tables in results			
Table (1)	Demographic and clinical characteristics of the two study groups.	33	
Table (2)	Causes of ICU admission of the two study groups.	33	
Table (3)	Serum procalcitonin level of the two study groups.	34	
Table (4)	APACHE II and SOFA scores of the two study groups.	35	
Table (5)	Bacteriological culture results among patients with elevated PCT.	36	
Table (6)	Length of ICU stay in the two study groups.	36	
Table (7)	Need for mechanical ventilation in the two study groups.	37	
Table (8)	Mortality rate in the two study groups.	38	

LIST OF FIGURES

No	Title	Page No	
Figures in review			
Figure (1)	The concept of SIRS as a common response to many initiating circumstances. The interrelationship between SIRS, sepsis, and infection is shown	5	
Figure (2)	Fate of procalcitonin during inflammation and normal condition	14	
Figure (3)	PCT algorithm for antibiotic therapy	17	
Figure (4)	Serum procalcitonin levels reported in various disorders	19	
Figure (5)	Specificity and sensitivity of serum procalcitonin levels reported in controls and various disorders (I = infectious, NI = non-infectious).	21	
Figures in Results			
Figure (6)	Serum procalcitonin level of the two study groups.	35	

LIST OF ABBREVIATIONS

ABGs	Arterial blood gases
ALI	Acute lung injury
ALT	Alanine aminotransferase
ARDS	Acute respiratory distress syndrome
AST	Aspartate aminotransferase
AUROC	Area under the receiver operating characteristics
CALC-1	Calcitonin I
CCP-I	Carboxyterminus peptide I
CDC	Centers for Disease Control and Prevention
CGRP	Calcitonin gene-related peptide
CO	Cardiac output
COPD	Chronic obstructive pulmonary disease
CRP	C-reactive protein
CT	Calcitonin
DAMPs	Damage-associated molecular patterns
DIC	Disseminated intravascular coagulation
DO2	Oxygen delivery
DVT	Deep vein thrombosis
ED	Emergency department
EIP	Emerging infections program
FDA	Food and Drug Administration
GI	Gastrointestinal
IL	Interleukin
ISTH	International society of thrombosis and hemostasis
LPS	Lipopolysaccharide
MODS	Multiple organ dysfunction syndrome
PAF	Paroxysmal atrial fibrillation
PAMPs	Pathogen-associated molecular patterns
PCT	Procalcitonin
PEEP	Positive end expiratory pressure
PT	Prothrombin time
SIC	Sepsis induced coagulopathy
SIRS	Systemic inflammatory response syndrome
TNF	Tumor necrosis factor
WBC	White blood cell

Introduction

The critically ill patients with sepsis usually undergo antibiotic empirical treatment. This strategy results in antibiotic overuse and increase in the cost and bacterial resistance. These patients initially present with systemic inflammatory response syndrome (SIRS). SIRS is seen after trauma, major operation, severe inflammation and infections (Bone RC et al, 2009)

Patients with SIRS undergo supportive therapy except SIRS due to an infection that is diagnosed as sepsis and needs early administration of antibiotic and control of infection. The prognosis of sepsis is worse than SIRS and differentiation between them is vital for the intensivist. Outcomes of critically ill patients with sepsis can improve if these patients receive prompt and appropriate antibiotic therapy (**Dellinger RP et al, 2008**).

The diagnosis of sepsis in critically ill patients is probably delayed because sign and symptoms of infection can be missing due to alteration in immune status as well as the exposure to specific treatment and procedures. In addition, because of the low specificity of diagnosis of sepsis in critically ill patients and fear of not treating life-threatening infection, leads intensivist to overuse of antibiotics in ICU (Herbert et al., 2013).

These issues lead to the development of new biomarkers that accurately predict sepsis in these patients. Previous studies have showed that serum level of procalcitonin (PCT) increased in patients with sepsis, and this marker is accurate in the diagnosis of sepsis. Normal serum levels of PCT are below 0.5 ng/mL and patients with serum levels above 2 ng/mL are more likely to develop sepsis (**Reinhart K et al, 2006**).

It was shown that PCT is a useful guide for initiation of antibiotic in patients with respiratory infection. Moreover, PCT-guided treatment can decrease the duration of antibiotic therapy in critically ill patients. Also, one study concluded that PCT guide treatment in patients with lower tract respiratory infection decreased antibiotic consumption up to 46.4% and clinical outcomes, and mortality were similar to patients who underwent empirical antibiotic treatment (Müller B et al, 2010).

Aim of Work

The aim of this study is to evaluate the effectiveness of serum procalcitonin level as a guide for antibiotic prescription in critically ill patients with SIRS without evidence of infection in intensive care unit.

Chapter (I) SIRS

Chapter (I)

Systemic Inflammatory Response Syndrome

Definition of SIRS

The distinction between SIRS and sepsis centers upon the presence or absence of a focus of infection. Thus, the identification of SIRS does not confirm a diagnosis of infection or sepsis since the features of SIRS can be seen in many other non-infective conditions. Non-infective causes of SIRS include acute pancreatitis, burns, trauma, or following major elective surgery (Fig. 1). On the other hand, sepsis is defined as a SIRS in which there is an identifiable focus of infection caused by bacterial pathogens, viruses, fungi, and parasites. Of the patients with SIRS associated with infection, the majority have Gram-negative sepsis (Willatts et al., 2012). Although differing etiologies present an identical clinical picture, the failure to identify causal pathogenic microorganisms does not necessarily mean that bacterial pathogens are absent, owing to the limitation of current diagnostic techniques (Marshall and Sweeney, 2011).

At least two criteria are required for the identification of SIRS. Thus, SIRS are manifested by two or more of the following conditions: temperature >38°C or <36°C; heart rate >90 beats/ min; respiratory rate >20 breaths/min or PaCO2 <32 torr (<4.3 kPa); WBC >12,000 cells /mm3, <4000 cells /mm3 or >10% immature (band) forms (**Bone et al., 2010**). The ACCP/SCCM has also recognized progression in the disease state from simple SIRS / sepsis to severe SIRS/sepsis in the presence of acute organ dysfunction, hypotension, or hypo perfusion. However, it should be noted that the SIRS criteria cannot perform much better for diagnosis or as a measure of prognosis, perhaps because they are too wide (**Bone et al., 2010**).

Chapter (I) SIRS

Fig. 1. The concept of SIRS as a common response to many initiating circumstances. The interrelationship between SIRS, sepsis, and infection is shown. (**Bone et al., 2010**).

Patients with an attack of SIRS who survive the initial inflammatory insult may die following a relatively minor second event that would not normally be life threatening (Moore and Moore, 2015). According to the two-hit hypothesis, the initial overactive SIRS such as acute pancreatitis somehow primes the inflammatory response. Recovery is possible if no further insult occurs. Bacterial infection as a relatively minor secondary attack will, however, lead to an exaggerated secondary inflammatory response and possibly death. Thus, the septic complications of acute pancreatitis can manifest themselves as an exaggerated SIRS response with consequent multiple organ failure and death (Bhatia et al., 2010).

Clinical features of SIRS

The defining clinical features of SIRS are disturbance of body temperature, tachycardia, hyperventilation and alteration in white blood cell count. The image of a patient who is non-specifically described as 'septic' or 'toxic' with sweating, fever, chills and hypotension will be familiar to most clinicians. A frequent complication of SIRS is MODS. Dysfunction is defined as an inability of the organ to maintain homeostasis. Any organ system can become dysfunctional as a result of SIRS, and the number of organ systems involved is directly related to mortality (**Bone et al., 2012**). The most important manifestations of MODS in SIRS include the spectrum of acute lung

Chapter (I) SIRS

injury (ALI) and acute respiratory distress syndrome (ARDS) and cardiovascular derangement (Herbert et al., 2013).

Etiology

The etiology of systemic inflammatory response syndrome (SIRS) is broad and includes infectious and noninfectious conditions, surgical procedures, trauma, medications, and therapies. The inciting molecular stimuli inducing the above generalized inflammatory reaction fall into two broad categories, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). PAMPs become present when infection of foreign cell lysis releases these foreign molecules intrinsic to their structure into the circulation, whereas DAMPs arise when cellular injury occurs at rates that overwhelm local clearance mechanisms. Thus, generalized bacteremia, severe pneumonia (viral or bacterial), severe trauma with tissue injury, and pancreatitis all share common inflammatory activation pathways (Annane et al., 2009).

The following is partial list of the infectious causes of SIRS: bacterial sepsis, burn wound infections, candidiasis, cellulitis, cholecystitis, community-acquired pneumonia, diabetic foot infection, erysipelas, infective endocarditis, influenza, intra-abdominal infections (eg, diverticulitis, appendicitis(gas gangrene, meningitis, nosocomial pneumonia, pseudomembranous colitis, pyelonephritis, septic arthritis, toxic shock syndrome, urinary tract infections (male and female), (**Dremsizov et al., 2013**).

The following is a partial list of the noninfectious causes of SIRS: acute mesenteric ischemia, adrenal insufficiency, autoimmune disorders, burns, chemical aspiration, cirrhosis, cutaneous vasculitis, dehydration, drug reaction, electrical injuries, erythema multiforme, hemorrhagic shock, hematologic malignancy, intestinal perforation, medication side effect (eg, from theophylline(, myocardial infarction, pancreatitis, seizure, substance abuse - stimulants such as cocaine and amphetamines, surgical procedures, toxic epidermal necrolysis, transfusion reactions, upper gastrointestinal bleeding and vasculitis (**Thoeni, 2012**).