

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Structural Engineering

Analyzing BIM Performance In Building Projects Using Lean Concept

Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science In Civil Engineering

(Structural Engineering)

By

Ahmad Fathy Belal

Bachelor of Science In Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2014

Supervised By

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures Structural Engineering Department Faculty of Engineering - Ain Shams University

Dr. Ahmed Hussein Elyamany

Associate Professor Construction Engineering and Utilities Faculty of Engineering-Zagazig University

Dr. Mohamed Ahmed El-Mikawi

Associate Professor Structural Engineering Department Faculty of Engineering - Ain Shams University

Cairo - (2021)

FACULTY OF ENGINEERING

: Master of Science in Civil Engineering

Date: / /

Thesis

Researcher Name	: Ahmad Fathy Belal	
Thesis Title	: Analyzing BIM Performan	ce In Building
	Projects Using Lean Conce	pt
Examiners' Committe	e e	Signature
Prof. Dr. Manal Abd Professor of Construction Construction Engineering Housing and Building Nat	Project Management and Project Management Institute	
Prof. Dr. Aly Sherief Professor of Reinforced C Structural Engineering De Faculty of Engineering - A	oncrete Structures partment	
Prof. Dr. Ayman Hus Professor of Reinforced C Structural Engineering De Faculty of Engineering - A	oncrete Structures partment	

FACULTY OF ENGINEERING

Thesis

: Master of Science in Civil Engineering

Date: / /

Researcher Name Thesis Title	: Ahmad Fathy Belal: Analyzing BIM PerfoProjects Using Lean G	
Supervision Committe	ee	Signature
Prof. Dr. Ayman Hus Professor of Reinforced Co Structural Engineering Dep Faculty of Engineering - A Dr. Ahmed Hussein E Associate Professor Construction Engineering - Z Dr. Mohamed Ahmed Associate Professor	concrete Structures partment Lin Shams University Clyamany and Utilities lagazig University I El-Mekawi	
Structural Engineering Dep Faculty of Engineering - A	-	

Statement

This thesis is submitted as a partial fulfilment of Master of Science	in	Civi
Engineering Engineering, Faculty of Engineering, Ain shams Univer	sity	•

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student 1	nam	e
Ahmad Fa	athy	Belal
Signature	2	
Date:	/	/

Researcher Data

Name : Ahmad Fathy Belal

Date of birth : 16 April 1992

Place of birth : Cairo, Egypt.

Last academic degree : Bachelor of Science

Field of specialization : Structural Engineering

University issued the degree : Ain Shams University

Date of issued degree : July 2014

Current job : Structural Engineer

Acknowledgment

IN THE NAME OF ALLAH, THE MOST GRACIOUS AND THE MOST MERCIFUL

First and above all, I have to thank Allah for giving me wisdom and knowledge I have today. I praise Allah for His care and support and providing me with the opportunity to present my hard work in a beneficial knowledge to people.

I would like to gratefully thank my respectful supervisors **Prof. Dr. Ayman Hussein**, **Dr. Ahmad Hussein Elyamany and Dr. Mohamed El-Mekawi** for their mentorship, information, patience, and powerful support in my thesis. I thank them for their encouragement and their flexible treatment during the course of my thesis. I also thank them for caring, patience, and their great effort to make my thesis appear in its current form.

Eventually, thanks for everything Mother and Father. I am what I am thanks to your efforts and sacrifices. I thank you for all the love you have always given me. I would like to express my warmest heartfelt love and appreciation to Mom who stood beside me and supported me in every step in my life. Success is in my stride because I have parents like you by my side, you are the best parents in the world.

Table of Contents

	Page
TABLE OF CONTENTS	i
LIST OF FIGURES	iii
LIST OF TABLES	iv
ABSTRACT	v
CHAPTER 1: INTRODUCTION	1
1.1 GENERAL	1
1.2 RESEARCH QUESTIONS	5
1.3 RESEARCH OBJECTIVE	5
1.4 RESEARCH MOTIVATION	5
1.5 RESEARCH SCOPE AND LIMITATION	6
1.6 RESEARCH METHODOLOGY	6
1.7 THESIS OUTLINE	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 BACKGROUND	8
2.2 BIM TECHNOLOGY	9
2.3 LEAN APPROACH	11
2.4 INTERACTION BETWEEN BIM AND LEAN	13
2.5 SUMMARY	18
CHAPTER 3: BIM PERFORMANCE	19
3.1 INTRODUCTION	19
3.2. DATA COLLECTION AND ANALYSIS	21
3.2.1 ACTUAL MAN-HOURS WITH RESPECT TO BUDGETED	
MAN-HOURS	24
3.2.2 MODEL DEVELOPMENT	25
3.2.3 RELATIONSHIP BETWEEN AREA AND MAN-HOURS	27
3.3 DISCUSSION.	28
3.3.1 BIM PROJECTS	28
3.3.2 THE TRADITIONAL WAY PROJECTS	28
3.3.3 MODEL VALIDATION	29
CHAPTER 4: LEAN WAY IN CONSTRUCTION PROJECTS	31
4.1 INTRODUCTION	31
4.1.1 EVOLUTION FROM CRAFT PRODUCTION TO MASS	
PRODUCTION	31

4.1.2 TOYOTA PRODUCTION SYSTEM	32
4.1.3 LEAN PRODUCTION AND LEAN PRINCIPLES	33
4.2. LEAN CONSTRUCTION	34
4.2.1 LEAN CONSTRUCTION ORIGINS	34
4.2.2 LEAN CONSTRUCTION DEVELOPMENT	35
4.2.3 CONSTRUCTION INDUSTRY COMPARED TO THE	
MANUFACTURING INDUSTRY	36
4.2.4 TOOLS AND TECHNIQUES OF LEAN CONSTRUCTION	37
4.3 INTERACTION BETWEEN LEAN PRINCIPLES AND BIM	38
4.3.1 DATA ANALYSIS	39
4.3.2 PARETO CHART	46
4.3.3 DELAY CAUSES OF PROJECTS	47
4.3.4 FMEA ANALYSIS	50
4.3.5 FISHBONE ANALYSIS	51
4.4 SUMMARY	54
CHAPTER 5: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	55
5.1 SUMMARY	55
5.2 CONCLUSIONS	55
5.3 FUTURE RESEARCH.	57
REFERENCES	

List of Tables

TABLE (3.1): LIST OF PROJECTS	22
TABLE (3.2): FREQUENCY OF PROJECT TYPES	23
TABLE (4.1): MANUFACTURING AND CONSTRUCTION INDUSTRY DIFFERENCES	37
TABLE (4.2): PROJECTS DURATION DATA	44
TABLE (4.3): PROJECTS DELAY DURATION.	45
TABLE (4.4): DELAY CAUSES DATA	47
TABLE (4.5): FMEA ANALYSIS	51

List of Figures

FIGURE (2.1): FRAMEWORK MATRIX BETWEEN BIM FUNCTIONALITY AND LE	EAN
PRINCIPLES.	14
FIGURE (2.2): VARIATION IN FREQUENCY OF COORDINATION-BASED ROOT	
CAUSES	15
FIGURE (2.3): PROTOTYPE 1	17
FIGURE (2.4): PROTOTYPE 2.	18
FIGURE (3.1): LEVEL OF DEVELOPMENT DURING PROJECT LIFECYCLE	20
FIGURE (3.2): NO. OF HOURS PER SQUARE METER FOR DIFFERENT TYPES OF	
PROJECTS.	24
FIGURE (3.3): NUMBER OF ACTUAL MAN-HOURS WITH RESPECT TO BUDGETI	ED
MAN-HOURS FOR PROJECTS DONE USING THE TRADITIONAL WAY	24
FIGURE (3.4): NUMBER OF ACTUAL MAN-HOURS WITH RESPECT TO BUDGETI	
MAN-HOURS IN BIM PROJECTS	25
FIGURE (3.5): RELATIONSHIP BETWEEN PROJECT AREA (m ²) AND MAN-HOUR	S (HR)
FOR RESIDENTIAL BUILDINGS TYPE	26
FIGURE (3.6): RELATIONSHIP BETWEEN PROJECT AREA (m²) AND MAN-HOUR	S (HR)
FOR COMMERCIAL BUILDINGS TYPE	26
FIGURE (3.7): EXCEL SYSTEM INPUT DATA EXAMPLE	27
FIGURE (4.1-1): DESIGN PROCESS-PHASE (1)	41
FIGURE (4.1-2): DESIGN PROCESS-PHASE (2)	42
FIGURE (4.1-3): DESIGN PROCESS-PHASE (3)	
FIGURE (4.2): PROJECTS DELAY BY PHASE	46
FIGURE (4.3): PARETO CHART USING FREQUENCY OF OCCURRENCE	
FIGURE (4.4): PARETO CHART USING DURATION OF DELAY	49
FIGURE (4.5): FISHBONE DIAGRAM.	53

ABSTRACT

Building Information Modeling (BIM) is defined as the process of design, construction and use of the building or facility infrastructure using information about virtual objects.

Previous studies concluded that BIM implementation resulted in increasing the design cost by 6.5%,11% and 17% for Schematic Design phase, Design Development phase, and Construction Documentation phase, respectively. However, there is still a need to compare between BIM and CAD technologies relative to budgeted and actual man-hours.

On the other hand, Lean construction refers to the application of lean thinking or lean principles on projects in the construction industry. The Construction industry is different in many ways from the Manufacturing industry. The unique and complex nature of the construction industry presents an immense challenge for the application of production management, as it would not be easy to simply transfer management practices from production to construction unless modifying construction management methods and culture.

BIM and Lean are quite in concept. However, it has been established that a synergy exists. The objective of this study is to compare between BIM and CAD technologies in different kinds of projects, relative to budgeted and actual man-hours, to develop a Design Estimate that could predict the estimated man-hours for BIM based projects. The significance of this study is the value of the comparison and its reflection in estimating man-hours with an acceptable accuracy based on data collected from BIM projects, which could affect the bidding process. Another objective of this study is

to attempt to apply Lean Approach to the design phase of the construction projects to enhance its performance.

Data of 40 projects designed in the last 10 years were analyzed in order to develop the Design Estimate. The results showed that there was a 4.6% and +7.0% difference between the estimated and the actual man-hours for Residential buildings type, and a +7.6% and -5.0% difference between the estimated and the actual man-hours for commercial buildings type, with a reasonable error rate considering the limited number of collected BIM projects.

Meanwhile, Delays have become a universal phenomenon, resulting in time and cost overruns in most cases, although schedule delays seem to be embedded in all projects, identifying the main causes and preventing these problems from occurring are better than resolving subsequent delay-related disputes. Lean approach provides an informative guidelines to waste reduction or even elimination if properly adopted. In this study, the Pareto chart was used in order to highlight the main causes of delay in the design process, and the results of the Lean Approach implementation indicated that about 28% of the total number of delay causes resulted in about 73% of the causes of delay of the projects when using the frequency of occurrence as the Defects, also, about 23% of the total number of delay causes resulted in about 77% of the causes of delay of the projects when using the delay duration as the Defects. Finally, the overall performance improvement ranges between 3% and 34% by solving about 23% of the total number of delays.

Keywords: BIM, Lean Construction, man-hours, Design Phase.