

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Biomineralization of selenium from red sea (Mangrove community) through remote sensing

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

M.Sc. Microbiology

By

Soad Hassan El-Saied Shatla

B.Sc. (Microbiology and Chemistry, 2015)

Supervised By

Prof. Mehreshan Taha El Mokadem

Professor of Microbiology, Botany department at Women Faculty For Arts, Science and Education

Assoc. Prof. Sameh Bakr El Sayed El-Kafrawy

Associate Professor of Marine Sciences National Authority for Remote Sensing and Space Sciences (NARSS)

Dr. Hala Abd Elmonem Ahmed

Lecturer of Microbiology, Botany department at Women Faculty For Arts, Science and Education

2021

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Approval Sheet

Title: Biomineralization of selenium from red sea (Mangrove community) through remote sensing

Name: Soad Hassan El Saied Shatla

B.Sc. (Microbiology and Chemistry, 2015)

Date: / /

Advisory committee

Prof.Mehreshan Taha EL-Mokadem

Professor of Microbiology, Botany Department, Women Faculty For Arts, Science and Education

Prof. Hoda Hamed Mohamed EL-Hendawy

Professor of Microbiology, Science Faculty, Helwan University

Prof. Nagwa Mahmoud Sedky Othman

Professor of Biotechnology and Microbiology, Science Faculty for Women, Al-Azhar University

Assoc. Prof. Sameh Bakr El Sayed El-Kafrawy

Associate Professor of Marine Sciences National Authority for Remote Sensing and Space Sciences (NARSS)

Ain Shams University
Faculty of Women
For Arts, Science & Education
Botany Department

Title: Biomineralization of selenium from red sea (Mangrove community) through remote sensing

Name: Soad Hassan El Saied Shatla

B.Sc. (Microbiology and Chemistry, 2015)

Date: / /

Supervisors committee

Prof. Mehreshan Taha EL-Mokadem

Professor of Microbiology, Botany Department at Women Faculty For Arts, Science and Education

Assoc. Prof. Sameh Bakr El Sayed El-Kafrawy

Associate Professor of Marine Sciences National Authority for Remote Sensing and Space Sciences (NARSS)

Dr. Hala Abd Elmonem Ahmed

Lecturer of Microbiology, Botany Department at Women Faculty for Arts, Science and Education

سورة البقرة الأية: (32)

Announcement

Thesis thesis has not been previously, submitted for any degree at this or at any other university.

Soad Hassan El-Saied Shatla

Dedication

I dedicate this work to soul of my deceased father, my dear and beloved affectionate mother, friend, father and brother Mohamed and sisters. To everyone who encouraged and supported me. All my love and appreciation for my gift from Allah my beloved family.

Acknowledgments

Firstly, my best praise and endless thanks to **ALLAH**, who provided me with his grace in my all life.

I would like to express my grateful and hearty thanks to my dear, example and principal supervisor, **Prof. Mehreshan Taha El Mokadem**, Professor of Microbiology, Department of Botany, Faculty of woman for Arts, Science and Education, Ain Shams University, for suggesting the research point, valuable advice, keen guidance, comments, encouragement which made the completion of this thesis possible, support, useful suggestions, and patiently answering many questions and constructive criticism through the whole stages of this thesis, personally I learnt from her experiences and her highly professional attitude, patient and organization.

It is a great pleasure for me to express my grateful thanks to my supervisor Assoc. Prof. Dr. Sameh B. El-Kafrawy, Head of Marine Sciences department, National Authority for Remote Sensing and Space Sciences (NARSS) for his excellent advice, enthusiastic guidance, patiently answering many questions and encouragement towards the successful completion of this study.

It is a great pleasure for me to express my grateful thanks to my supervisor **Dr. Hala Abd El Monem Ahmed**, a lecturer of Microbiology, Department of Botany, Faculty of Women for Arts, Science and Education, Ain Shams University, for her advice, and patiently answering many questions, encouragement, through the whole stages of this thesis.

Also, i would like to thank all of those that helped me directly or indirectly to complete my thesis.

I would like to thank my friend Manar Ahmed Mohamed Basheer, Researcher at National Authority for Remote Sensing and Space Sciences (NARSS), for her encouragement, advice and help to complete my thesis.

I wish to express my deepest sense of gratitude and sincerest appreciation to **all** marine science lab team especially,

Mr/ Ali Abdel Hameed, Mr / Ameer Ashraf and Mrs/ Shimaa Refat for their kindly help and supporting during the field trip and collection of samples and their significant guidance and valuable advice during my work for successful completion of my work.

I wish to express my deepest appreciation to **Prof. Ahmed Khalaf allah**, Professor of Plant Ecology, Department of Botany, Faculty of Woman for Arts, Science and Education, Ain Shams University for his kind help and encouragement during the thesis.

It is my pleasant duty to express gratitude to all botany department for its encouragement, through the study.

Contents

	List of tables	I
	List of figures	III
	List of abbreviation	VII
	Abstract	X
I	Introduction	1
	Aim of the study	6
II	Review of Literature	7
	Red Sea	7
	Marine environment	8
	Osmotic adaptation of halophilic microorganisms	10
	Mangrove ecosystem	12
	Mangrove as a rich environment	15
	Mangrove Importance	17
	Remote sensing and Mangrove monitoring	18
	Remote sensing	20
	Remote sensing and mangrove changes detection	21
	Normalized difference vegetation index (NDVI)	26
	Extraction of Drains (or Wadis) using Digital Elevation Models (DEMs)	29

	Selenium	32
	A. Sources in the environment	33
	B. History and Background	33
	C. Chemical and physical Properties	34
	D. Transmembrane Movement	36
	Microbial reduction of selenium oxyanions	36
	Global market	41
	Vibrio alginolyticus	43
	Cobetia amphilecti	46
III	Materials and Methods	48
	Study area	48
	Sample collection	51
	Microbiological Studies	53
	Media used	53
	a) Salt peptone agar (SPA)	53
	b) Salt peptone agar (SPA)	54
	c) Luria Bertani broth (LB)	54
	Selenite reducing bacteria bacteria	54
	Remote sensing techniques:	57
	a. Satellite data used	57
	b. Normalized Difference Vegetation Index (NDVI)	57
	c. Drainage pattern	58

Microscopic appearance and cultural	59
characteristics	
Biochemical tests:	59
Starch hydrolysis	59
Gelatinase production	59
Nitrate reduction	60
Catalase production	60
Blood Hemolysis	60
Carbohydrates fermentation	60
Parameters controlling the growth of selenite reducing bacteria	61
NaCl concentrations	61
pH values	62
Incubation temperature	62
Measurement of selenite reduction potential of the bacterial isolates	62
Sodium selenite concentrations	62
pH values	62
Selenite content determination	63
Testing the location of Se metal within the red	63
cultured cells	
Transmission Electron Microscopy (TEM)	64

	Scanning Electron Microscopy (SEM)	65
	Phylogenetic analysis of the two selected	66
	isolates	
	16S rRNA identification	67
	Statistical analysis	68
IV.	Results	69
	selenite reducing bacteria	69
	Isolation	69
	Enumeration	70
	Remote sensing techniques	76
	Normalized Difference Vegetation Index	76
	(NDVI)	
	Drainage pattern	76
	Microscopic appearance and cultural characteristics	78
	Parameters controlling the growth of selenite	86
	reducing bacteria	
	a) Sodium chloride (NaCl) concentrations	86
	b) pH values	86
	c) Incubation temperature	88
	Measurement of selenite reduction potential of	91