

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Development of a Biosensor based on Graphene-Gold Nanoparticles Hybrid

Thesis

Submitted to Faculty of Science-Ain Shams University as a partial fulfillment for Degree of MSc. in Biophysics

By **Ahmed Medhat Kamal Zaki**

BSc. in biophysics 2015

Supervised by

Prof. Dr. Ibrahim Hassan Ibrahim

Professor of Biophysics, Faculty of Science, Ain Shams University.

Dr. Dina Salah El-din Mohamed

Lecturer of Biophysics, Faculty of Science, Ain Shams University.

Dr. Amal Sayed Kasry

Director at Nanotechnology Research Center (NTRC), British University in Egypt.

Department of Physics Faculty of Science Ain Shams University 2021

CERTIFICATION OF APPROVAL

Development of a Biosensor based on Graphene-Gold Nanoparticles Hybrid

By **Ahmed Medhat Kamal Zaki**

This thesis for M.Sc. degree has been approved by

<u>Supervisors</u>	Signature
Prof. Dr. Ibrahim Hassan Ibrahim Professor of Biophysics, Faculty of Science, Ain Shams University.	
Dr. Dina Salah El-din Mohamed Lecturer of Biophysics, Faculty of Science, Ain Shams University.	
Dr. Amal Sayed Kasry Director at Nanotechnology Research Center (NTRC), British University in Egypt.	

Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt.

2021

Development of a Biosensor based on Graphene-Gold Nanoparticles Hybrid

Name: Ahmed Medhat Kamal Zaki

Degree: MSc.

Department: Physics-biophysics Group

Faculty: Science

University: Ain Shams

Graduation Date: 2015- Ain Shams University

Registration Date: 8 /1/2018

Acknowledgement

I would like to say Thank you to everyone helped me throughout this thesis to work on finishing my work adequately and concisely .

Firstly, I thank prof.Ibrahim Hassan who is considered as a father to me and I won't forget his role during all the travel time and his advices which were and still very useful to me for dealing with our career.

Secondly, Dr. Dina Salah who was the first one to help me for MSc. Registration and taught me a lot of things regarding the nanoscience and laboratory work. I wish her all the best.

Thirdly, Dr. Amal Kasry, the supervisor who taught me everything related to Graphene and supported me through the MSc. Journey to present my work in several conferences and to travel abroad.

Finally, Prof. Svetlana and Nazarii Boichuk who supported my work in Germany and were very helpful to publish this work. I hope to see you again.

Contents

LIST OF FIGURES	VI
LIST OF TABLES	XII
LIST OF ABBREVIATIONS	XIII
ABSTRACT	I
Chapter 1: Introduction	
1.1- BIOSENSORS	1
1.2- ROLE OF PH SENSORS IN BIOSENSING	2
1.2.1- NERNSTIAN SENSITIVITY	2
1.3- CARBON ALLOTROPES	3
1.4- GRAPHITE	3
1.5- GRAPHITE OXIDE	5
1.6- GRAPHENE OXIDE	7
1.6.1- GRAPHENE OXIDE PROPERTIES	7
1.6.2- GRAPHENE OXIDE SYNTHESIS	7
1.6.3- REDUCED GRAPHENE OXIDE	9
1.7- GRAPHENE	11
1.7.1- GRAPHENE PROPERTIES	11
I-2D STRUCTURE OF GRAPHENE	11
II-OPTICAL PROPERTIES OF GRAPHENE	11
III-MECHANICAL PROPERTIES OF GRAPHENE	14
IV-ELECTRICAL PROPERTIES	14
1.7.2- GRAPHENE SYNTHESIS METHODS	15
1.8- GRAPHENE NANOPLATELETS	16
1.9- THIN FILMS FABRICATION	17
1.9.1- SPIN COATING	17
1.9.2- DIP COATING	18
1.9.3- DROP CASTING	19
1.9.4- ELECTRON-BEAM EVAPORATION	19
1.10-GOLD NANOPARTICLES PROPERTIES AND DIFFERENT APPLICATIONS	21
1.10.1- Gold Nanoparticles Synthesis Methods	21
1.10.1.1- Chemical Synthesis Methods	22
A-TURKEVICH METHOD	22

B-BRUST METHOD	23
C- SEEDED GROWTH METHOD	23
1.10.2- GNPs Self-Assembly	24
Attachment of gold to glass	24
1.11-HYBRID OF GRAPHENE AND GOLD NANOPARTICLES	24
1.12-METAL-OXIDE-SEMICONDUCTOR CAPACITOR (C-MOS)	25
1.12.1- Structure and Terminology	25
1.12.2- Capacitance- Voltage Relation	28
a- Accumulation Region	28
b- Flat Band Voltage	28
c-Depletion Region	29
d- Inversion Region	29
1.13-AIM OF WORK	33
Chapter 2: Literature Review	
2.1- GRAPHENE OXIDE AS A BIOSENSOR	35
2.2- GRAPHENE	37
A) REDUCED GRAPHENE OXIDE AS A SENSOR	37
B)GRAPHENE AS A BIOSENSOR	38
C) GRAPHENE NANOPLATELETS AS A BIOSENSOR	40
2.3- GOLD NANOPARTICLES	41
A-GOLD NANOPARTICLES FOR PHOTOTHERMAL THERAPY	41
B-GOLD NANOPARTICLES AS A BIOSENSOR	42
2.4- GRAPHENE-GOLD NANOPARTICLES HYBRID (GAH) AS A BIOSENSOR	43
2.5- CAPACITANCE-VOLTAGE MEASUREMENT	44
2.5.1- Rule of pH sensors in biosensing	45
A-C-EIS AS A PH SENSOR	46
B-C-MOS AS PH SENSOR	46
Chapter 3: Materials and methods	
3.1- INTRODUCTION	49
3.2- GRAPHENE	49

3.2.1-Graphene Oxide Preparation	49
3.2.2-Reduction of Graphene Oxide	51
3.2.3-Characterization of GO and RGO	52
3.2.3.1 - FTIR Characterization	52
3.2.3.2- Raman spectroscopy	53
3.2.3.3 - UV-VIS spectrophotometer	54
3.2.4 – GO and rGO thin films by Spin coating	56
3.2.5 Graphene Nanoplatelets	60
3.2.5.1- Graphene Nanoplatelets Solutions Synthesis	60
3.2.5.2- GP Thin Films Synthesis	61
A- Dip Coating method	61
B- Spin Coating Method	63
3.2.5.3 - Characterization of Graphene Nanoplatelets Solutions and Thin Films	64
I- UV-VIS Characterizations	64
A-Dip Coating	64
B- Spin Coating	64
II- Atomic Force Microscope	64
III- Scanning electron microscope	65
3.3- GOLD NANOPARTICLES	66
3.3.1- CTAB Gold Nanoparticles	66
3.3.1.1- Synthesis of Gold Nanoparticles	66
3.3.1.2- CTAB- GNPs Self-Assembly	66
I- Drop Casting of Gold on Glass by one side	66
A- Using Different Compound for Thiolation of Gold Nanoparticles	66
B- Optimization of GNPs and Sodium thioglycolate concentrations	67
C- Drop Casting of Gold on Glass with Different Concentrations and Time of Incubation	68
D- GNPs-STG Solutions with STG Concentrations (10 nM,0.01 mM, 20 mM) and	GNPs
Concentrations (0.05 nM, 0.1 nM, 0.15 nM)	69
E- GNPs-STG Solutions with STG Concentrations (50 nM, 1 μ M, 0.05 mM,1 mM	[, 100
mM, 2 M)	69
F- Drop Casting of GNPs-STG with concentration (0.05 mM)	70
II- Annealing of GNPs Films at Different Temperatures	71
A- Optimization of Annealing Temperature of GNPs Glass Thin Film	71
B- Comparison between Annealing at the Optimized Temperature and Drop-Casting	72
3.3.2- Citrate-Capped GNPs	73

3.3.2.1- GNPs Self-Assembly	74
Using 3-MercaptoPropyl Tri-ethoxy Silane (MPTES) as a linker	74
3.3.3-Electron Beam Evaporation	75
A-1- Optimization of Gold Layer Thickness	75
A-2- Annealing of Gold	76
3.4- GP-GNPS HYBRID	77
3.5- CAPACITANCE-VOLTAGE (C-V) MEASUREMENT	78
3.5.1- SILICON WAFERS PROCESSING	78
3.5.2- C-V SYSTEM	79
Chapter 4: Results and discussion	
4.1- GRAPHENE	83
4.1.1- REDUCED GRAPHENE OXIDE	83
4.1.1.1- Graphene oxide and Reduced graphene oxide characterization results	83
A-FTIR Spectroscopy Results	83
B-Raman Results	85
4.1.1.2- Optimization and Characterization of Graphene thin films	87
A-1- UV-VIS Spectrophotometer Results	88
A-2- Summary of Optimized Spin Coating Parameters	90
4.1.2-Graphene Nanoplatelets	92
4.1.2.1-Graphene Nanoplatelets Solutions Synthesis	92
4.1.2.1.1-The best solvent for GP	92
4.1.2.1.2-Thin Films of GP by Different Methods	95
A-Dip Coating	95
A-1- UV-characterizations	95
A-2- Raman Spectroscopy	96
B-Spin Coating of GP	97
B-1- Optimizing Spin Coating Speed and Concentration of GP Solution	98
B-2-Results of GP with Concentration 0.4 mg/mL	100
C-Results Summary	101
4.2- GOLD NANOPARTICLES	102
4.2.1- CTAB- Gold Nanoparticles Synthesis and Characterization	102
4.2.1.1-Synthesis of Gold Nanoparticles	102

4.2.1.2-UV-VIS Characterization of Gold Nanoparticles	103
4.2.1.3- CTAB- GNPs Self-Assembly	104
I-Characterization of Gold Nanoparticles thin films	104
A-UV-VIS Spectrophotometer Results after Drop Casting of Gold	104
A-1- GNPs-STG Solutions with STG concentrations (10 nM,0.01 mM, 20 mM) a	nd
GNPs concentrations (0.05 nM, 0.1 nM, 0.15 nM)	104
A-2- GNPs-STG Solutions with STG Concentrations (50 nM, 1 $\mu\text{M},$ 0.05 mM,1 mM, 100 mM, 2 M)	106
A-3- GNPs-STG Thin films with Concentrations of (50 nM, 1 $\mu M, 0.05$ mM) of STG	108
A-4- Results of Drop Casting of GNPs Solution with STG Concentration (0.05 mM)	110
A-5- Results Summary	112
B-Annealing of GNPs Glass Thin Films at (100°C,150°C, 200°C,300°C)	114
4.2.2-Citrate Gold Nanoparticles	118
4.2.2.1- Characterization of Citrate GNPs	118
I-UV-Characterization of bulk Gold Nanoparticles	118
II-Characterization of Citrate GNPs Thin Films	119
Using 3-MercaptoPropyl Tri-ethoxy Silane (MPTES) as a linker	119
4.2.3-Electron Beam Evaporated Gold film	120
4.2.3.1- Electron Beam Evaporation by using Univex 400	120
4.2.3.2- Optimization and Characterization results	120
4.2.3.3- Annealing Gold	121
4.2.3.4- Characterization of Gold Nano-islands by using SEM and UV-VIS Spectrophotometer	121
4.2.4-Results Summary	123
4.3- GP-GNPS HYBRID	124
Characterization results of the final hybrid	124
4.4- CAPACITANCE-VOLTAGE (C-V) MEASUREMENTS	126
4.4.1-C-V Characterization Results	126
4.4.1.1-Characterization of the Graphene Thin-films	126
4.4.1.2-Characterization of Gold	127
4.4.1.3-Characterization of The Hybrid at Different pH	128
4.4.1.4-Durability and Stability tests	131
4.4.1.5-Comparison with state of art	133
CONCLUSION	135
REFERENCES	138

Arabic abstract

List of figures

Figure	Page
Figure 1. 1. Image of all the types of carbon allotropes	4
Figure 1. 2. Schematic diagram of (a) Graphite and (b) Single layer of graphene from graphite.	5
Figure 1.3. hydrogen bonding between functional groups on graphite oxide sheets after exfoliation in water	6
Figure 1. 4. TEM image of (a) graphene single sheet by ACS Materials (Yunyong Li et al., 2013), (b) graphene nanoplatelets (GP) (Fatima et al., 2017)	13
Figure 1. 5. Schematic of a typical thermal or electron-beam evaporation system. The source material is heated by an electrical current in thermal evaporation or by bombardment by an electron beam in electron-beam evaporation. (Martín-Palma & Lakhtakia, 2013	20

Figure 1. 6. C-MOS structure with 3 layers, metal, oxide and	26
semiconductor	
Figure 1. 7 Equivalent circuit of C-MOS as capacitances connected in	26
series	
Figure 1 9 Consistence Veltage relation and its regions	20
Figure 1. 8. Capacitance- Voltage relation and its regions	30
Figure 1. 9. Energy band diagram	31
g	
Figure 1. 10. Energy band diagram under different biasing conditions.	32
Figure 1. 10. Energy band diagram under different blasing conditions.	34
Figure 3. 1. Image of (a)Graphene oxide solution with brown color after	
stirring for 2 hours, (b) rGO solution after reduction using hydrazine	51
hydrate, (c) rGO powder after drying of solution	
Figure 3.2. Jasco-V-770 UV-VIS spectrophotometer	55
Figure 3.3. VTC-100 vacuum spin coater	57
Figure 3.4. Optical microscope image of M25 graphene nanoplatatelet	60
Figure 3.5. ND-DC dip coater	61
Figure 3.6. Laurel W-400B spin coater	63
rigure 3.0. Laurer W-400D spin coater	US
Figure 2.7 Witash LIHTS 2008 quantum hatamatan	77
Figure 3.7. Witech- UHTS-300S spectrophotometer	77
Figure 3.8. Keithley source meter	80
1 gaz c con 1 come, source meter	00

Figure 3.9. HIOKI 3532-50 LCR Hi TESTER	80
Figure 3. 10. The designed C-MOS sensor as a layer-by-layer configuration	
with the order (Au/SiO ₂ /Si/Al) (a), the measurement cell of C-V system with	
reference electrode connected to the metal side of C-MOS while the positive	81
gate electrode is connected to p-type silicon (b)	
Figure 4. 1 FTIR results of graphene oxide (a) and compared with reduced	84
graphene oxide spectrum (b)	
Figure 4.2 RGO thin films Raman spectrum comparison	86
Figure 4. 3. GO thin films with different spin speeds (a) and different spin	88
time (b)	
Figure 4.4 GO spin coated thin films with different GO concentrations (a)	88
and different volumes of GO solution (b)	
Figure 4.5 (a) rGO thin films at different spin speeds with concentration	
$0.5\ mg/mL$, $25\mu L$ volume and $30s$ spin time $% 100$, (b) comparison of rGO and	89
GO spin coated thin films at speed 2500 rpm, $25\mu L$ volume and 30s spin	
time	
Figure 4. 6. Optical microscope image of M25 graphene nanoplatatelets	93
used in this work	
Figure 4. 7. (a) NMP chemical structure, (b) GP-NMP solution with conc. of	93
60 μg/mL	
Figure 4. 8. UV-VIS spectrum of (a) GP DMSO solutions with different	95
concentrations, (b) dip coating different procedures for conditions	
optimization	
Figure 4. 9 (a) Raman microscopy image, (b) Raman spectrum of mono and	97
multi-layer GP spots on the dip coated thin film	
Figure 4. 10 (a)UV-spectrum of spin coated GP (0.1 mg/mL) on the glass	