

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Synthesis of Some Nitrogen Heterocycles Having Anticipated Biological Activity

Thesis Submitted by

Eslam Mourad Abbass Mesbah

B.Sc. (Chemistry) **2013**

M.Sc. (Chemistry) 2018

For the requirement of Ph. D. degree of science in chemistry

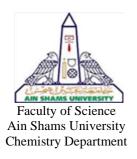
Thesis Advisors

Prof. Dr. Mohamed Mahmoud Mohamed Mohamed

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Prof.Dr. Ali Khalil Ali Khalil

Professor of Organic Chemistry, Faculty of Science, Ain Shams University


Dr. Abeer Mohamed El-Sayed El-Naggar

Associate Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Dr. Alaa Mahmoud Mostafa Zidan

Doctor of Organic Chemistry, Faculty of Science, Ain Shams University

To
Department of chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2021

Synthesis of Some Nitrogen Heterocycles Having Anticipated Biological Activity

Thesis Submitted by

Eslam Mourad Abbass Mesbah

B.Sc. (Chemistry) 2013

M.Sc. (Chemistry) 2018

A Thesis submitted for the Ph. D. degree as a Partial fulfillment for requirement of the Ph. D. degree of science in chemistry

Thesis Advisors	Thesis Approval
Prof. Dr. Mohamed Mahmoud Mohamed	d
Professor of Organic Chemistry,	
Faculty of Science, Ain Shams University	
Prof. Dr. Ali Khalil Ali Khalil	
Professor of Organic Chemistry,	
Faculty of Science, Ain Shams University	
Dr. Abeer Mohamed El-Sayed El-Naggar	
Associate Professor of Organic Chemistry,	
Faculty of Science, Ain Shams University	
Dr. Alaa Mahmoud Mostafa Zidan	
Doctor of Organic Chemistry,	
Faculty of Science, Ain Shams University	Head of Chemistry department
	Prof Dr Avman Avouh Ahdel-Sha

Examiner committee

Faculty of Science, Fayoum University

Approval Sheet for Submission Title of Ph.D. Thesis

Synthesis of Some Nitrogen Heterocycles Having Anticipated Biological Activity

Presented by Eslam Mourad Abbass Mesbah

Prof. Dr. Mohamed Mahmoud Mohamed Professor of Organic Chemistry, Faculty of Science, Ain Shams University Prof. Dr. Ali Khalil Ali Khalil Professor of Organic Chemistry, Faculty of Science, Ain Shams University Prof. Dr. Ahmed Fouad Mohamed El-Farargy Professor of Organic Chemistry, Faculty of Science, Zagazig University Prof. Dr. Ahmed Yousef Mohamed El-Kady Professor of Organic Chemistry,

Head of Chemistry department

Prof. Dr. Ayman Ayoub Abdel-Shafi

List of Contents

Contents	page no.
Acknowledgment	
Publication	
Aim of work	
Abstract	
Summary	a
Introduction	
1) Synthesis of Hydrazinoquinoxaline Derivatives	1
2) Reaction of Hydrazinoquinoxaline Derivatives	
2.1) Acylation reaction	2
2.2) Reaction with Phthalaldehydic acid	3
2.3) Reaction with aldehydes and ketones	4
2.4) Reaction with β-diketones	4
2.5) Reaction with arylidine	5
2.6) Reaction with triethyl orthoformate	5
2.7) Diazonium reaction	6
2.8) Reaction with aromatic aldehyde followed by cyclization	6
2.9) Reaction with chloro acetylchloride	8
2.10) Reaction with chalcones	9

2.11) Reaction with furane 2,5 dione	9
2.12) Reaction with benzile	10
3) Synthesis of 2,3-Dichloroquinoxaline	10
4) Reaction of 2,3-Dichloroquinoxaline	10
4.1) Reaction with sulfur nucleophiles	11
4.2) Reaction with nitrogen nucleophiles	14
4.3) Reaction with Binucleophiles	18
4.4) Coupling Reaction With Carbon Nucleophiles	24
4.5) Synthesis of Polycondensed Systems	29
5) Biological Activities	32
Result and Discussion	43
• Part 1: Eco-Friendly synthesis and anticancer assessment of quinoxaline derivatives	44
Part 2: Synthesis of plausible anticovid-19 quinoxaline derivatives	75
Figures	93
Experiment	144
References	158
Arabic Summary	Í

List of Figures

Figure	Page
• Fig.(1a) IR Spectrum of Compound (5)	93
• Fig.(1b) ¹ H-NMR Spectrum of Compound (5)	94
• Fig.(2a) IR Spectrum of Compound (6)	95
• Fig.(2b) ¹ H-NMR Spectrum of Compound (6)	96
• Fig.(3a) IR Spectrum of Compound (7)	97
• Fig.(3b) ¹ H-NMR Spectrum of Compound (7)	98
• Fig.(4a) IR Spectrum of Compound (8)	99
• Fig.(4b) ¹ H-NMR Spectrum of Compound (8)	100
• Fig.(5a) IR Spectrum of Compound (9)	101
• Fig.(5b) ¹ H-NMR Spectrum of Compound (9)	102
• Fig.(6a) IR Spectrum of Compound (10)	103
• Fig.(6b) ¹ H-NMR Spectrum of Compound (10)	104
• Fig.(7a) IR Spectrum of Compound (11)	105
• Fig.(7b) ¹ H-NMR Spectrum of Compound (11)	106
• Fig. (8a) IR Spectrum of Compound (13)	107
• Fig.(8b) ¹ H-NMR Spectrum of Compound (13)	108
• Fig.(9a) IR Spectrum of Compound (14)	109
• Fig. (9b) ¹ H-NMR Spectrum of Compound (14)	110
• Fig.(10a) IR Spectrum of Compound (15)	111
• Fig. (10b) ¹ H-NMR Spectrum of Compound (15)	112
• Fig.(11a) IR Spectrum of Compound (16)	113

•	Fig. (11b) ¹ H-NMR Spectrum of Compound (16)	114
•	Fig.(12a) IR Spectrum of Compound (17)	115
•	Fig. (12b) ¹ H-NMR Spectrum of Compound (17)	116
•	Fig. (13a) IR Spectrum of Compound (18)	117
•	Fig. (13b) ¹ H-NMR Spectrum of Compound (18)	118
•	Fig. (14a) IR Spectrum of Compound (19)	119
•	Fig. (14b) ¹ H-NMR Spectrum of Compound (19)	120
•	Fig. (15a) IR Spectrum of Compound (20)	121
•	Fig. (15b) ¹ H-NMR Spectrum of Compound (20)	122
•	Fig. (16a) IR Spectrum of Compound (21)	123
•	Fig. (16b) ¹ H-NMR Spectrum of Compound (21)	124
•	Fig. (17a) IR Spectrum of Compound (22)	125
•	Fig. (17b) ¹ H-NMR Spectrum of Compound (22)	126
•	Fig. (18a) IR Spectrum of Compound (24)	127
•	Fig. (18b) ¹ H-NMR Spectrum of Compound (24)	128
•	Fig. (19a) IR Spectrum of Compound (25)	129
•	Fig. (19b) ¹ H-NMR Spectrum of Compound (25)	130
•	Fig. (20a) IR Spectrum of Compound (26)	131
•	Fig. (20b) ¹ H-NMR Spectrum of Compound (26)	132
•	Fig. (21a) IR Spectrum of Compound (27)	133
•	Fig. (22a) IR Spectrum of Compound (28)	134
•	Fig. (22b) ¹ H-NMR Spectrum of Compound (28)	135
•	Fig. (23a) IR Spectrum of Compound (30)	136
•	Fig. (23b) ¹ H-NMR Spectrum of Compound (30)	137
•	Fig. (24a) IR Spectrum of Compound (31)	138
•	Fig. (24b) ¹ H-NMR Spectrum of Compound (31)	139

•	Fig. (25a) IR Spectrum of Compound (32)	140
•	Fig. (25b) ¹ H-NMR Spectrum of Compound (32)	141
•	Fig. (26a) IR Spectrum of Compound (33)	142
•	Fig. (26b) ¹ H-NMR Spectrum of Compound (33)	143