

METHODOLOGY FOR OPTIMIZATION OF ENERGY EFFICIENCY USING VEGETATED FAÇADES IN MULTI-STORY RESIDENTIAL BUILDINGS WITH REFERENCE TO COLD SEMI-ARID AND HOT ARID CLIMATES

By

Reem Ali Talib Alothman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Architectural Engineering

METHODOLOGY FOR OPTIMIZATION OF ENERGY EFFICIENCY USING VEGETATED FAÇADES IN MULTI-STORY RESIDENTIAL BUILDINGS WITH REFERENCE TO COLD SEMI-ARID AND HOT ARID CLIMATES

By Reem Ali Talib Alothman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in **Architectural Engineering**

Under the Supervision of

Prof. Dr. Ahmed Reda Abdin

Prof. Dr. Ayman Hassaan Ahmed

Professor of Architecture and
Environmental Control
Architecture Department
Faculty of Engineering, Cairo University

Prof. Dr. Ayman Hassaan Ahmed

Professor of Landscape Architecture and
Environmental Planning
Architecture Department
Faculty of Engineering, Cairo University

METHODOLOGY FOR OPTIMIZATION OF ENERGY EFFICIENCY USING VEGETATED FAÇADES IN MULTI-STORY RESIDENTIAL BUILDINGS WITH REFERENCE TO COLD SEMI-ARID AND HOT ARID CLIMATES

By **Reem Ali Talib Alothman**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Architectural Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed Reda Abdin, Thesis Main Advisor

(Professor of Architecture and Environmental Control, Faculty of Engineering, Cairo University)

Prof. Dr. Ayman Hassaan Ahmed, Advisor

(Professor of Landscape Architecture and Environmental Planning, Faculty of Engineering, Cairo University)

Prof. Dr. Ahmed Ahmed Fikry, Internal Examiner

(Professor of Environmental Architecture, Faculty of Engineering, Cairo University)

Prof. Dr. Morad Abdelkader Abdelmohsen, External Examiner

(Professor of Architecture and Environmental Control, Faculty of Engineering, Ain Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Reem Ali Talib Alothman

Date of Birth: 13/06/1978

Nationality: Iraqi

E-mail: reemalitalib@yahoo.com

reemalothman@uomosul.edu.iq

 Phone:
 009647717881532

 Address:
 Al Rehab, Cairo

 Pagistration Data:
 01/03/2017

Registration Date: 01/03/2017 **Awarding Date:** / /2020

Degree: Doctor of Philosophy **Department:** Architectural Engineering

Supervisors:

Prof. Dr. Ahmed Reda Abdin Prof. Dr. Ayman Hassaan Ahmed

Examiners:

Prof. Ahmed Reda Abdin (Thesis main advisor)

Prof. Ayman Hassaan Ahmed (advisor)

Prof. Ahmed Ahmed Fikry (Internal examiner)
Prof. Morad Abdelkader Abdelmohsen (External

examiner)

(Faculty of Engineering, Ain Shams University)

Title of Thesis:

METHODOLOGY FOR OPTIMIZATION OF ENERGY EFFICIENCY USING VEGETATED FAÇADES IN MULTI-STORY RESIDENTIAL BUILDINGS WITH REFERENCE TO COLD SEMI-ARID AND HOT ARID CLIMATES

Key Words:

Energy consumption; Green vegetated façade; Multi-story residential; CO₂ emissions.

Summary:

The issue of energy consumption, especially in the building sector and, reducing energy are considered a major challenge faced by construction today. The research aims is optimization of energy efficiency by using vegetated façades in multi-story residential buildings in cold semi-arid and hot arid climate. It investigates the parametrical design for using vegetated façades. For this purpose, the energy consumptions are evaluated by using DesignBuilder tool, a vegetated layer considered as an additional layer for building, also as shading device therefore, the comparison will be between non-vegetated, direct and indirect green vegetated, insulated and shading façade. The study concluded that indirect green vegetated façades reduce the energy from 16.6% to 70.0% for cooling, and from 3.5% to 100% for heating period except increase in energy or not effective in some orientation, and reduce the annual energy consumption and CO₂ emissions was from 18% to 63.3% according to location and orientation.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Reem Ali Talib Alothman Date: 03/11/2020

Signature:

Dedication

To the reason for my existence and my role model in this life, who always encourage
and support me to walk the path of knowledge and took care of my children always and
especially at the beginning of my studies which helped me to get started, my Father and
my Mother, may God preserve them and keep them as a candle that illuminates my path
in life

I dedicate my humble work to all my **Family**......

To my dear **Husband**, who without his support, encouragement and his standing beside me in the most difficult situations, I would not have reached what I am now.....

To my **Children**, my loved ones, the joy of my heart, who carried a lot during my studies because of my being busy and far from them.......

To my dear **Brother** and my dear **Sisters** and their families......

Finally, I dedicate the outcome of my humble effort to my beloved country, Iraq

Acknowledgments

I extend my deep respect, thanks and appreciation to my supervisors:

Prof. Dr. Ahmed Abdin & Prof. Dr. Ayman Hassaan

For their supervision and support through my PhD study and related research

For their patience and motivation

And also for immense knowledge in pre- PhD subjects

Their guidance helped me in all the time of research and writing this thesis

Table of Contents

LIS	ST OF TA	BLE	ES	••••••	•••••	•••••	••••••	VIII
LIS	ST OF FIG	GUR	ES	•••••	•••••	•••••	•••••	XI
NO	MENCL	ATU	RE	•••••	•••••	•••••	••••••	XVI
AB	STRACT	•••••	••••••	•••••	•••••	•••••	••••••	XVII
СН	APTER	1:	INTRODU	JCTION TO	O ENER	GY OPTI	MIZATION	USING
VE	GETATE	D F	AÇADES	••••••	•••••	•••••	••••••	1
1.1.	. INCEPTIO	N						1
1.2.	RESEARC	CH PR	OBLEM					3
1.3.	RESEARC	CH AII	M AND OBJEC	TIVES				3
1.4.	RESEARC	TH OU	ESTIONS					4
		_						
1.6.	RESEARC	CH SC	OPE					4
				ENTAL DE				
BU.	ILDINGS	S	••••••	•••••	•••••	•••••	••••••	7
2.1.	INTRODU	CTIO	N					7
2.2.	GREEN B	UILD	INGS RATING	SYSTEM (GBI	RS)			7
	2.2.1.			system				
	2.2.2.	LE	EED RATING S	SYSTEM				9
	2.2.3.	GS	S RATING SYS	TEM				11
	2.2.4.	AS	SGB RATING	SYSTEM				12
	2.2.5.	GI	PRS RATING	SYSTEM				12
2.3.	PREVIOU	S STU	DIES					13
	2.3.1.	Th	ne study of Co	oma et al				13
	2.3.2.	Th	ne study of W	ong et al				14
	2.3.3.		•	ivieri et al				
	2.3.4.		•	ox et al				
	2.3.5.		•	al				
	2.3.6.		•	al				
	2.3.7.		•	e et al				
	2.3.8.		•	n et al				
2.4	2.3.9.		•	1				
2.4.	. CONCLUS	SION.	•••••		•••••	•••••	•••••	15
CH	APTER	3:	GREEN	VEGETAT	ED FA	ÇADES	IN RESID	ENTIAL
				•••••		=		
3.1	. A	DVA	NTAGES AND	DISADVANTA	GES OF GR	EEN VEGET	ATED FACADE	es17

3.1.1.	Advantages of green vegetated façades on the urban scale	17
3.1.1.1.	Energy consumption reduction	
3.1.1.2.	Reduce urban heat island effect	
3.1.1.3.	Air pollution mitigation	
3.1.1.4. 3.1.1.5.	Sound absorption	
3.1.1.5. 3.1.1.6.	Improve health and well-being and to preserve urban biodiversity	
3.1.2.	Advantages of green vegetated façades on building scale	
3.1.2.1.	Energy saving	
3.1.2.2.	Thermal performance improvement of the building envelope	
3.1.2.3.	Reduce the wind effect on the building	21
3.1.2.4.	Sound insulation	
3.1.3.	Disadvantages of green vegetated façades	21
3.2 PARAME	ETERS OF USING GREEN VEGETATED FAÇADES IN MULTI-STORY RESIDE	NTIAL
BUILDINGS		22
3.2.1.	Climate	22
3.2.2.	Seasons	22
3.2.3.	Plant selection	23
3.2.4.	Façade orientation	
3.2.5.	Structural parameters	
3.2.6.	Leaf area index	
3.2.7.	Irrigation systems	
3.2.8.	Maintenance	
3.2.9.	Supporting elements	
3.2.10.	Air gap thickness between the plant layer and the building façade wall	
3.2.11.	Cost	
	GETATED FAÇADES SYSTEMS	
3.3.1.	Green façades system	
3.3.2.	Green living walls system	
3.3.2.1.	Continous type	
3.3.2.2.	Modular green wall	
3.3.3.3.	Linear green walls	
	CS OF USING GREEN VEGETATED FAÇADES	
	S OF GREEN VEGETATED FAÇADES	
3.5.1.	International green vegetated façade projects	
3.5.1.1.	Newton Suites	
3.5.1.2. 3.5.1.3.	The Met Trio Apartments	
3.5.1.4.	Helios Residences.	
3.5.1.5.	Gramercy Residences	
3.5.1.6.	IDEO Morph 38 Tower	
3.5.2.	National green vegetated façade projects	38
3.6. Conclus	ION	44
CHAPTER 4	: LOCATION AND CLIMATE FOR TYPICAL CASE STUDY	45
A 1 INTRODUC	CTION	15
	CATION AND CLIMATE	
	STANDARDS RESIDENTIAL BUILDING	
4.4. DIMENSIC	N ANALYSIS FOR TYPICAL SPACES	56
4.5 CONCLUS	ION	61

		5: PRACTICAL PART "THE IMPACT OF USING GRED FAÇADES ON THE EFFICIENCY OF ENERGY"	
		TION	
		NTAL MODELING	
J.Z.	5.2.1.	Methodology	
	5.2.2.	Typical residential spaces	
5 2		UIPMENT AND PROCEDURES	
		SIMULATION FOR VARIOUS CATEGORIES	
5.4.			
	5.4.1. 5.4.1.1.	Space with different depths Annual energy consumption for space with different depths	
	5.4.1.2.	Annual CO ₂ emission for space with different depths	
	5.4.2.	Space with different occupancy	
	5.4.1.1.	Annual energy consumption for space with different occupancy	
	5.4.1.2.	Annual CO ₂ emission for space with different occupancy	
	5.4.3.	Space with different WWR	
	5.4.3.1. 5.4.3.2.	Annual energy consumption for space with WWR	
	5.4.3. <i>z</i> . 5.4.4.	Shape comparison	
	5.4.4.1.	Annual energy consumption for shape with one and two exposure façade	
	5.4.4.2.	Annual CO ₂ emission for shape with one and two exposure façade	
5.5.	STUDY VA	RIABLE AND CONSTANT	78
5.6.	ENERGY E	FFICIENCY AND CO ₂ EMISSIONS EXPERIMENTAL MODELING	78
	5.6.1.	First phase situation simulation for bare wall with different orientation	
	5.6.2.	Second phase situation simulation for different shading device depth	
	5.6.3.	Third phase situation simulation for insulated façade	
	5.6.4.	Fourth phase situation simulation for different LAI	
	5.6.5.	Fifth phase situation simulation for different green vegetation systems	91
	5.6.6.	Sixth phase situation simulation for indirect vegetation with different gap	94
5.7.	Conclusi	ON	97
СН	APTER 6	RESULTS & DISCUSSION	98
6 1	INTRODUC	TION	98
		FOR TYPICAL BEDROOM IN CASE 1 DUHOK	
0.2.	6.2.1.	Annual energy consumption for typical bedroom/ Duhok	
	6.2.2.	Annual CO ₂ emission for typical bedroom/ Duhok	
	6.2.3.	Energy consumption in the cooling period for typical bedroom/ Duhok	
	6.2.4.	Energy consumption in the econing period for typical bedroom/ Duhok	
63		FOR TYPICAL BEDROOM IN CASE 2 CAIRO	
0.5.	6.3.1.	Annual energy consumption for typical bedroom/ Cairo	
	6.3.2.	Annual CO ₂ emission for typical bedroom/ Cairo	
	6.3.3.	Energy consumption in the cooling period for typical bedroom/ Cairo	
	6.3.4.	Energy consumption in the cooling period for typical bedroom/ Cairo	
6 1		OR TYPICAL LIVING ROOM IN CASE 1 DUHOK	
U. 4 .	6.4.1.		
	6.4.2.	Annual energy consumption for typical living room/ Duhok	
	6.4.3.	Energy consumption in the cooling period for typical living room/ Duhok	
	6.4.4.	Energy consumption in the cooling period for typical living room/ Duhok Energy consumption in the heating period for typical living room/ Duhok	
	U.T.T.	Linery, combampaton in the neuting period for typical fixing fould. Duffor.	. 140

6.5.	RESULTS FO	OR TYPICAL LIVING ROOM IN CASE 2 CAIRO	129
	6.5.1.	Annual energy consumption for typical living room/ Cairo	129
	6.5.2.	Annual CO ₂ emission for typical living room/ Cairo	129
	6.5.3.	Energy consumption in the cooling period for typical living room/ Cairo	129
	6.5.4.	Energy consumption in the heating period for typical living room/ Cairo	130
6.6.	RESULTS D	ISCUSSION	139
	6.6.1.	Annual energy consumption	139
	6.6.2.	Annual CO ₂ emission	141
	6.6.3.	Energy consumption in the cooling period	144
	6.5.4.	Energy consumption in the heating period	146
6.7.	ENERGY CO	ONSUMPTION AND PAYBACK PERIOD	149
6.8.	Conclusio	ON	154
CHA	APTER 7:	CONCLUSION & RECOMMENDATIONS	156
7.1.	INTRODUCT	ΓΙΟΝ	156
7.2.	ACCOMPLIS	SHED OBJECTIVES	156
7.3.	ACCOMPLIS	SHED HYPOTHESIES	157
7.4.	RESEARCH	FINDING	157
7.5.	RECOMMEN	NDATIONS	158
7.6.	FUTURE RE	SEARCHES	158
7.7.	SCIENTIFIC	CONTRIBUTION	159
7.8.	ENDING ST.	ATEMENT	159
REF	ERENCE	S	161

List of Tables

Table 2.1: The most mention GBRs names in the world and its shortcuts	8
Table 2.2: Criteria evaluation of the selected GBRs	13
Table 2.3: Criteria evaluation weightings of the selected GBRs	13
Table 4.1: Summarized the climate of the two case studies locations	47
Table 4.2: : Precipitation (mm) in Duhok and Cairo (all year round according to	seasons
and months)	
Table 4.3: Analysis of the dimensions of living and bedrooms in modern re	
communities	
Table 4.4: Features of window	
Table 4.5: Construction and thermal features of envelope, floor, and ceiling	60
Table 5.1: Example table for demonstration	63
Table 5.2: Occupation schedule of the bedroom.	
Table 5.3: Occupation schedule of the living room	
Table 5.4: Example table for demonstration	
Table 5.5: The percentage of increase in energy consumption in the case of an	increase
in the depth of space	
Table 5.6: The percentage of increase in energy consumption in the case of an	increase
in occupancy	
Table 5.7: The percentage of increase in energy consumption in the case of an	increase
in the WWR for the bedroom	
Table 5.8: The percentage of increase in energy consumption in the case of an	increase
in the WWR for the living room	
Table 5.9: Explain orientation for two exposure façade	
Table 5.10: The percentage of increase in energy consumption in the case of an	increase
in the WWR for the bedroom with two exposed façade	
Table 5.11: The percentage of increase in energy consumption in the case of an	
in the WWR for the living room with two exposed façade	78
Table 5.12: A comparison of energy consumption and CO ₂ emission for a	
bedroom with area 16m² for different orientations	79
Table 5.13: A comparison of energy consumption and CO ₂ emission for typic	
room with area 24m² for different orientation.	81
Table 5.14: The most efficient saving shading device depth for each orientat	tion with
saving for the bedroom	83
Table 5.15: The most efficient saving shading device depth for each orientat	tion with
saving for the living room.	84
Table 5.16: Construction of external insulation walls	85
Table 5.17: : The most efficient saving insulation thickness layer for each orient	tation for
the bedroom.	86
Table 5.18: The most efficient saving insulation thickness layer for each orient	ation for
the living room	87
Table 5.19: Characteristics of Hedera helix.	88
Table 5.20: The irrigation for green vegetated façade	88
Table 5.21: Construction of external vegetation walls	
Table 5.22: The most efficient saving I AI for each orientation for the bedroom	90

Table 5.23: The most efficient saving LAI for each orientation for the living room90
Table 5.24: Construction of external direct and indirect vegetation walls91
Table 5.25: The most efficient green vegetation system for each orientation for the
bedroom92
Table 5.26: The most efficient green vegetation system for each orientation for the living
room93
Table 5.27: Construction of external insulation and vegetation walls94
Table 5.28: The most efficient saving gap for each orientation for the bedroom95
Table 5.29: The most efficient saving gap for each orientation for the living room96
Table 6.1: Efficiency of using different phases in term of annual energy in the typical
bedroom
Table 6.2: Annual energy consumption saving % when using green vegetation in the
typical bedroom
Table 6.3: Efficiency of using different phases in term of annual energy in the typical
living room140
Table 6.4: Annual energy consumption saving % when using green vegetation in the
typical living room
Table 6.5: Efficiency of using different phases in term of annual energy in the typical
bedroom142
Table 6.6: Annual CO ₂ emission saving % when using green vegetation in the typical
bedroom142
Table 6.7: : Efficiency of using different phases in term of annual CO ₂ emission in the
typical living room
Table 6.8: Annual CO ₂ emission saving % when using green vegetation in the typical
living room
Table 6.9: Efficiency of using different phases in term of energy consumption in the
cooling period in the typical bedroom
Table 6.10: Energy consumption saving % in the cooling period when using green
vegetation in the typical bedroom145
Table 6.11: Efficiency of using different phases in term of energy consumption in the
cooling period in the typical living room
Table 6.12: Energy consumption saving % in the cooling period when using green
vegetation in the typical living room
Table 6.13: Efficiency of using different phases in term of energy consumption in the
heating period in the typical bedroom
Table 6.14: Energy consumption saving % in the heating period when using green
vegetation in the typical bedroom
Table 6.15: Efficiency of using different phases in term of energy consumption in the
heating period in the typical living room
Table 6.16: Energy consumption saving % in the heating period when using green
vegetation in the typical living room
Table 6.17: Annual energy consumption for typical bedroom for average 8.75 hours daily
operation for split unit
Table 6.18: Annual energy consumption for typical bedroom for average 8.75 hours daily
operation for split unit after saving by using indirect vegetated
Table 6.19: Monthly energy consumption with cost for typical bedroom for average 8.75
hours daily operation for split unit

Table 6.20: Monthly energy consumption with cost for typical bedroom for ave	rage 8.75
hours daily operation for split unit after saving by using indirect vegetated	151
Table 6.21: Annual energy consumption for typical living room for average 8 he	ours daily
operation for split unit	151
Table 6.22: Annual energy consumption for typical living room for average 8 ho	ours daily
operation for split unit after saving by using indirect vegetated	151
Table 6.23: Monthly energy consumption with cost for typical living room for	average 8
hours daily operation for split unit	152
Table 6.24: Monthly energy consumption with cost for typical living room for	average 8
hours daily operation for split unit after saving by using indirect vegetated	152
Table 6.25: Payback period for typical bedroom in two different locations	153
Table 6.26: Payback period for typical living room in two different locations	153

List of Figures

Figure 1.1: CO ₂ emission (kt) in two locations in 2014	1
Figure 1.2: Changing in CO ₂ emission (kt) in two locations from 1960 to 2014	2
Figure 1.3: Energy demand by each sector in two locations Iraq and Cairo	
Figure 1.4: Methodology	
Figure 1.5: Research structure	
Figure 2.1: Explain time line for GBRs	8
Figure 2.2: Explain the weight of environmental, social and economic pillars	s in
BREEAM international 2016.	
Figure 2.3: Explain the credit weighting of environmental, social and economic pillar	
LEED NCV4	
Figure 3.1: Explain the diagram of urban heat island	18
Figure 3.2: The way of using green vegetated as an evaporative cooling unit for	
conditioning	
Figure 3.3: Explain solar radiation through the green living wall	
Figure 3.4: The way of radiation transfer balane energy through green vegetation	
Figure 3.5: Different LAI value	
Figure 3.6: Irrigation network and location of drip irrigation lines for living wall	
Figure 3.7: Vertical greenery system	
Figure 3.8: Types of vertical green vegetated with different names for each type	
Figure 3.9: Types of green façades.	
Figure 3.10: Types of indirect green façades	
Figure 3.11: Kinds of plants that are using in green façades	
Figure 3.12: Kinds of plants that are using in green wall	
Figure 3.13: Living walls (wall-based systems)	
Figure 3.14: Newton Suites residential project	
Figure 3.15: The Met project	
Figure 3.16: Trio apartment's project	
Figure 3.17: Helios residences	36
Figure 3.18: Gramercy Residences.	
Figure 3.19: IDEO Morph 38 Tower	38
Figure 3.20: Examples of using simple vegetation in Duhok/ Iraq	39
Figure 3.21: Examples of using simple vegetation in Mosul/ Iraq	
Figure 3.22: Examples of using simple vegetation in Cairo/ Egypt	
Figure 3.23: Using green vegetated wall in Egypt	
Figure 3.24: Using green vegetated wall in Tag Sultan project in Cairo/ Egypt	
Figure 3.25: Using green vegetated wall in internal space of restaurant in Citystars in	
in Cairo/ Egypt	
Figure 3.26: Using green vegetated wall in internal spaces in Duhok/ Iraq	
· · · · · · · · · · · · · · · · ·	
Figure 4.1: Climate regions in two different countries Iraq and Egypt	45
Figure 4.2: Explain the location for two case studies	46
Figure 4.3: Direct normal irradiation for two locations	46
Figure 4.4: Global horizontal irradiation for two locations	
Figure 4.5: Explain the buildings distribution in modern residential communities	