

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

ULTRAFILTRATION PRE-TREATMENT FOR SURFACE WATER IN EGYPT

A Thesis

Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of PhD. Degree In Civil Engineering

Prepared by ENG. AMIRA MOHAMED NAGY ABDALLAH

B.Sc. in Civil Engineering, June 2012 M.Sc. in Civil Engineering, 2016 Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Supervisors

PROF. DR. MOHAMED EL HOSSEINY ABDEL RAHMAN EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

DR. NANY ALY HASSAN NASR

Assistant Professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. HOSSAM MOSTAFA HUSSIEN,

Assistant professor of Sanitary & Environmental Engineering, Faculty of Engineering, Ain Shams University, Cairo, EGYPT

2021

ULTRAFILTRATION PRE-TREATMENT FOR SURFACE WATER IN EGYPT

A Thesis
Submitted to the Faculty of Engineering
Ain Shames University for the Fulfillment
of the Requirement of PhD. Degree
In Civil Engineering

Prepared by ENG. AMIRA MOHAMED NAGY ABDALLAH

B.Sc. in Civil Engineering, June 2012 M.Sc. in Civil Engineering, 2016 Faculty of Engineering, Ain Shams University, Cairo, EGYPT

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Hisham Sayed Abd Elhalim	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Cairo University	
Prof. Dr. Mohamed Sobhy Abd Elrahman	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mohamed El Hosseiny El Nadi	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
	Date:/2021

DEDICATION

I wish to dedicate this work to who suffered to educate, prepare, build capacity and help myself to be as I am,

TO

MY MOTHER

&

MY BROTHER

for their encouragement and support to complete this work.

And also great thanks

TO

MY LOVING HUSBAND

for his patient encouragement and support to complete this work.

Also to

MY SON

May it could be his candle for future

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from November 2018 to April 2021.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2021

Signature: - -----

Name: - AMIRA MOHAMED NAGY ABDALLAH IBRAHIM

<u>ACKNOWLEDGMENT</u>

The candidate is deeply grateful to Prof. Dr. Mohamed El Hosseiny Abdel Rhman EL Nadi, Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University for suggesting the problem, being helpful in designing & building the pilot units, encourage, co-operation sponsoring and patient advising during preparation of this work

Also, deeply thanks to Dr. Nany Aly Hassan Nasr Assistant Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University & Dr. Hossam Mostafa Hussien, Assistant Professor of sanitary and Environmental Engineering, Faculty of Engineering, Ain Shams University, for their help, support and co-operation during the preparation of the study.

Also, very grateful to the sanitary engineering staff and the laboratory personnel Faculty of Engineering, Ain Shams University for their encouragement and support during thesis preparation.

ABSTRACT

NAME: - AMIRA MOHAMED NAGY ABDALLAH

Title: - "ULTRAFILTRATION PRE-TREATMENT FOR

SURFACE WATER IN EGYPT"

Faculty: - Faculty of Engineering, Ain Shams University.

Specialty: - Civil Eng., Public Works, Sanitary Eng.

Abstract: -

This study targeted to develop a compact unit with a small size and minimum cost that works as a pretreatment unit for the ultrafiltration modules to reach the maximum benefits from this type of plant. This unit targets to produce water with quality suitable to enter the ultrafiltration modules according to the manufacturer.

The study was divided into two main parts. The first part was concerned with the development of the pretreatment units. There were two units created, one for applying sedimentation process and the other one for applying filtration process. The second part was concerned with testing these units and determine the ability to use them. Four runs with different retention times were used to test the sedimentation unit and each run was repeated three times with three different water sources that had different TSS concentrations. The results proved the suitability of using this unit for the ultrafiltration pretreatment process. On the other hand, seven runs made using different filter media to determine the suitability of this unit. Sand, anthracite coal, and agricultural waste were the three media used in this study as mono, dual or triple filtration processes. Experimental results proved that the triple filtration had the best removal efficiency and the agricultural waste had the worst removal efficiency.

The study concludes mathematical model for the sedimentation process can be used in the design of the sedimentation pretreatment units. Another model created for the filtration process was used to determine the filtration media cost for the required unit. These models recorded error percentages in an acceptable range.

KEY WORDS: Ultrafiltration – Pretreatment – Compact unit-Sedimentation – Filtration

SUPERVISORS

Prof. Dr. Mohamed El Hosseiny Abdel Rahman El Nadi,

Dr. Nany Aly Hassan Nasr,

Dr. Hossam Mostafa Hussien,

Table of Contents

DEDICATION	iii
STATEMENT	iv
ACKNOWLEDGMENT	V
ABSTRACT	vi
TABLE OF CONTENTS	Vii
LIST OF TABLES	xi
TABLE OF FIGURES	xiii
LIST OF ABBREVIATIONS	XVii
CHAPTER ONE:	(1-5)
1.1 BACKGROUND	
1.2 AIM OF STUDY	2
1.3 SCOPE OF WORK	
1.3.1 THEORETICAL WORK	
1.3.1.1 Data Collection	2
1.3.1.2 Results, Analysis and Discussion	2
1.3.1.3 Modeling	
1.3.1.4 Thesis Preparation	
1.3.2 EXPERMINTAL PROCEDURE	3
1.4 THESIS ORGANIZATION	3
1.4.1 CHAPTER I: INTRODUCTION	
1.4.2 CHAPTER II: LITERATURE REVIEW	4
1.4.3 CHAPTER III: MATERIAL AND METHODS	4
1.4.4 CHAPTER IV: RESULTS	
1.4.5 CHAPTER V: MODELING	4
1.4.6 CHAPTER VI: DISCUSSION	4
1.4.7 CHAPTER VII: CONCLUSIONS	5
CHAPTER TWO:	(6-46)
2.1 INTRODUCTION	6
2.2 MEMBRANE PLANTS	7
2.2.1 MEMBRANE CLASSIFICATION	
2.2.2 MEMBRANE MATERIALS	
2.2.3 MEMBRANE CONFIGURATION	10
2.2.4 MEMBRANE FILTRATION PROCESS	12
2.2.5 MEMBRANE FOULING	13
2.2.5.1 Fouling Mechanisms	

2.2.5.2 Fouling Classification	15
a) Particulate fouling	15
b) Inorganic fouling (scaling formation)	16
c) Organic fouling	
d) Biological fouling	
2.2.6 MEMBRANE CLEANING	
2.2.6.1 Backwashing	
2.2.6.2 Chemical Cleaning	
2.2.7 ULTRAFILTRATION PLANTS	
2.3 ULTRAFILTRATION PRE-TREATMENT	20
2.3.1 COAGULATION-SEDIMENTATION	21
2.3.1.1 Coagulation Mechanism	22
2.3.1.2 Coagulant Type	23
2.3.1.3 Coagulant Dose	25
2.3.2 FILTRATION	31
2.3.2.1 Microfiltration	31
2.3.2.2 Bio-Filtration	31
A. Factors Affecting Bio-Filtration	33
A.1 Feed Water Characteristics	33
A.2 Filter Design and Operation Conditions	
2.3.3 ADSORPTION	39
2.3.3.1 Activated Carbon	39
2.3.3.2 Magnetic Ion Exchange	
2.3.4 PRE-OXIDATION	42
2.3.5 FLOTATION	43
2.3.6 COMBINATION OF PRE-TREATMENT TECHNOI	LOGIES 45
2.4 APPLICATION OF ULTRAFILTRATION PLANTS IN	N EGYPT 46
CHAPTER THREE:	(47-59)
3.1 STUDY LOCATION	47
3.2 PILOT DESCRIPTION	47
3.2.1 Sedimentation Unit	48
3.2.2 Filtration Unit	49
3.3 OPERATION PROGRAM	51
3.3.1 PHASE ONE	51
3.3.1.1 First Run	52
3.3.1.2 Second Run	52
3.3.1.3 Third Run	52
3.3.1.4 Fourth Run	52
J.J.1. 1 1 UUI II IXIII	

.3.2 PHASE TWO	52
3.3.2.1 First Run	53
3.3.2.2 Second Run	53
3.3.2.3 Third Run	53
3.3.2.4 Fourth Run 3.3.2.5 Fifth Run	54
	54
3.3.2.6 Sixth Run	55
3.3.2.7 Seventh Run	55
3.4 SAMPLING	
3.5 MEASUREMENT ANALYSIS	56
3.5.1 TOTAL SUSPENDED SOLIDS	
3.5.2 TIME	58
3.6 MODELING	
3.6.1 SEDIMENTATION MODELING	
3.6.2 FILTRATION MODELING	59
CHAPTER FOUR:	(60-71)
4.1 GENERAL	60
4.2 EXPERIMENTS RESULTS	60
4.2.1 PHASE ONE	
4.2.1.1 FIRST RUN	60
4.2.1.2 SECOND RUN	61
4.2.1.3 THIRD RUN	62
4.2.1.4 FOURTH RUN	63
4.2.2 PHASE TWO	64
4.2.2.1 FIRST RUN	65
4.2.2.2 SECOND RUN	66
4.2.2.3 THIRD RUN	67
4.2.2.4 FOURTH RUN	68
4.2.2.5 FIFTH RUN	69
4.2.2.6 SIXTH RUN	70
4.2.2.7 SEVENTH RUN	71
CHAPTER FIVE:	(72-85)
5.1 INTRODUCTION	
5.2 MODELING DESIGN	
5.2.1 SEDIMENTATION MODEL	
5.2.2 SEDIMENTATION UNIT SIZING	
5.2.3 FILTRATION MODEL	

CHAPTER SIX:	(86-118)
6.1 GENERAL	86
6.2 EXPERIMENTAL RESULTS DISCUSSIONS	86
6.2.1 FIRST PHASE RESULTS DISCUSSIONS	86
6.2.2 SECOND PHASE RESULTS DISCUSSIONS	93
6.3 SEDIMENTATION MODEL VERIFICATION	104
6.4 FILTRATION MODEL VERIFICATION	110
6.4 APPLICATION DISCUSSIONS	116
CHAPTER SEVEN:	(119-122)
7.1 STUDY CONCLUSION	119
7.2 RECOMMENDATIONS	120
7.3 FURTHER WORK	121
REFERENCES:	(123-137)

List of Tables

CHAPTER TWO:	(6-46)
TABLE (2/1) DIFFERENT MEMBRANE MODULE CONFIGURA	
TABLE (2/2) SUMMARIZE SOME COAGULATION STUDIES TABLE (2/3) SUMMARIZE SOME FILTRATION STUDIES	29-30
CHAPTER THREE:	(47-59)
TABLE (3/1) ULTRAFILTRATION FEED WATER QUALITY R	
CHAPTER FOUR:	(60-71)
TABLE (4/1) TSS CONCENTRATIONS WITH DIFFERENT WAY QUALITIES (30MIN).	61
TABLE (4/2) TSS CONCENTRATIONS WITH DIFFERENT WA QUALITIES (15MIN) TABLE (4/3) TSS CONCENTRATIONS WITH DIFFERENT WA	TER 62
QUALITIES (5MIN)	63 TER
QUALITIES (20 SEC) TABLE (4/5) TSS CONCENTRATIONS WITH DIFFERENT WA' QUALITIES (SAND)	TER65
TABLE (4/6) TSS CONCENTRATIONS WITH DIFFERENT WA' QUALITIES (ANTHRACITE COAL) TABLE (4/7) TSS CONCENTRATIONS WITH DIFFERENT WA'	TER 66
QUALITIES (AGRICULTURAL WASTE)TABLE (4/8) TSS CONCENTRATIONS WITH DIFFERENT WA	67 TER
QUALITIES (SAND & ANTHRACITE COAL) TABLE (4/9) TSS CONCENTRATIONS WITH DIFFERENT WA' QUALITIES (SAND & AGRICULTURAL WASTE)	TER
TABLE (4/10) TSS CONCENTRATIONS WITH DIFFERENT WA QUALITIES (ANTHRACITE COAL & AGRICULTURAL W	ATER /ASTE).70
TABLE (4/11) TSS CONCENTRATIONS WITH DIFFERENT WA QUALITIES (SAND, ANTHRACITE COAL & AGRICULTU WASTE).	JRAL
CHAPTER FIVE:	(72-85)
TABLE (5/1) AVERAGE TSS REMOVAL EFFICIENCY WITH DIFFERENT SEDIMENTATION VELOCITY	73

TABLE (5/2) AVERAGE TSS REMOVAL EFFICIENCY WITH	
DIFFERENT SEDIMENTATION VELOCITY	76
TABLE (5/3) STANDARD UNITS DIMENSIONS WITH ITS SE	ERVED
DISCHARGE	78
TABLE (5/4) AVERAGE TSS REMOVAL EFFICIENCY WITH	
DIFFERENT FILTRATION MEDIAS	80
TABLE (5/5) AVERAGE TSS REMOVAL EFFICIENCY WITH	
FILTRATION MEDIA AND THEIR COST	85
CHAPTER SIX:	(86-118)
TABLE (6/1) TSS REMOVAL EFFICIENCY WITH DIFFEREN	Т
RETENTION TIME AT FIRST WATER QUALITY	
TABLE (6/2) TSS REMOVAL EFFICIENCY WITH DIFFEREN'	
RETENTION TIME AT SECOND WATER QUALITY	
TABLE (6/3) TSS REMOVAL EFFICIENCY WITH DIFFEREN'	
RETENTION TIME AT THIRD WATER QUALITY	
TABLE (6/4) TSS REMOVAL EFFICIENCY WITH DIFFEREN'	
FILTRATION MEDIA AT FIRST WATER QUALITY	
TABLE (6/5) TSS REMOVAL EFFICIENCY WITH DIFFEREN'	
FILTRATION MEDIA AT SECOND WATER QUALITY	
TABLE (6/6) TSS REMOVAL EFFICIENCY WITH DIFFEREN'	
FILTRATION MEDIA AT THIRD WATER QUALITY	
TABLE (6/7) MEASURED & CALCULATED TSS REMOVAL	
EFFICIENCY FOR THE FIRST WATER SOURCE	105
TABLE (6/8) MEASURED & CALCULATED TSS REMOVAL	
EFFICIENCY FOR THE SECOND WATER SOURCE	106
TABLE (6/9) MEASURED & CALCULATED TSS REMOVAL	
EFFICIENCY FOR THE THIRD WATER SOURCE	107
TABLE (6/10) MEASURED & CALCULATED TSS REMOVAL	_
EFFICIENCY FOR THE SECOND & THIRD WATER SOU	JRCE 109
TABLE (6/11) MEASURED & CALCULATED TSS REMOVAL	_
EFFICIENCY FOR THE FIRST WATER SOURCE	111
TABLE (6/12) MEASURED & CALCULATED TSS REMOVAL	
EFFICIENCY FOR THE SECOND WATER SOURCE	112
TABLE (6/13) MEASURED & CALCULATED TSS REMOVAL	_
EFFICIENCY FOR THE THIRD WATER SOURCE	113
TABLE (6/14) MEASURED & CALCULATED TSS REMOVAL	_
EFFICIENCY FOR THE SECOND & THIRD WATER SOU	JRCE 115