

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

The Effect of Fractional Co2 Laser & Sandblasting Surface Treatment on Shear Bond Strength of Cubic Zirconia

(in Vitro Study)

Thesis

Submitted for the Partial Fulfillment of the Masters Degree of Science Requirement in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By Engy Azmy Hemdan

B.D.S (Modern Science and Arts, 2012)

Faculty of Dentistry Ain Shams University 2021

Under Supervision of

Prof. Dr. Tarek Salah Morsi

Professor and Head of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

Dr. Fatma Adel

Lecturer of Fixed Prosthodontics Department Faculty of Dentistry, Ain Shams University

> Faculty of Dentistry Ain Shams University 2021

Acknowledgment

First and foremost, I feel always indebted to **GOD**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Tarek Salah Morsi**, Professor and Head of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Fatma Adel**, Lecturer of Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	3
Statement of the Problem	33
Aim of the Study	34
Materials and Methods	35
Results	55
Discussion	80
Summary and Conclusions	87
Recommendations	91
References	92
Arabic Summary	—

List of Tables

Table No	. Title	Page No.
Table (1):	Materials used in this study	35
Table (2):	Chemical composition of the cubic Zir	conia37
Table (3):	Technical data of Bruxir Anterior Ziro Blank	
Table (4):	Chemical composition of Panavia SA	cement plus 37
Table (5):	Summary for methodology	38
Table (6):	Samples grouping:	38
Table (7):	Sintering cycle:	42
Table (8):	Two-way ANOVA results for the effectivariables on mean shear bond strength	
Table (9):	The mean, standard deviation (SD) results of two-way ANOVA test for between shear bond strength (MPa treatments regardless of aging	r comparison) of surface
Table (10):	The mean, standard deviation (SD) results of two-way ANOVA test for between shear bond strength (MPa) of after aging regardless of surface treatments.	r comparison of before and
Table (11):	The mean, standard deviation (SD) results of two-way ANOVA test fo between shear bond strength (MPa treatments before or after aging	r comparison of surface
Table (12):	The mean, standard deviation (SD) results of two-way ANOVA test for between shear bond strength (MPa) be aging with each surface treatment	r comparison fore and after
Table (13):	The frequencies (n), percentages (%) Chi-square and Fisher's Exact test for between modes of failure in different g	r comparison

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Bruxir anterior Zirconia blank	36
Figure (2):	Panavia SA Cement Plus Automix.	
Figure (3):	50µm alumina oxide particles for air abrasion	
Figure (4):	Isomet saw used for cutting of zirconia plates	
Figure (5):	Cutting of ultra-translucent zirconia blank via Isomet 4000 microsaw	
Figure (6):	12.00 mm length before sintering	
Figure (7):	2.40 mm Thickness before sintering	
Figure (8):	10 mm length after sintering	
Figure (9):	2.00 mm thickness after sintering	
Figure (10):	Sintering Machine	
Figure (11):	Polyvinylchloride water pipe and zirconia sample	
Figure (12):	Zirconia plate inside PVC mold filled with acrylic	
Figure (12).	resin.	
Figure (13):	Sandblasting unit	
Figure (14):	The customized holder.	
Figure (15):	Air abrasion at distance 10 mm	
Figure (16):	DEKKA carbon dioxide laser unit	40
Figure (17):	Co2 laser perpendicular to Zirconia plate in lateral direction	47
Figure (18):	Lateral movement of CO2 laser	47
Figure (19):	Ultrasonic cleansing of zirconia plates after all surface treatments.	48
Figure (20):	Resin application with auto mix tip	
Figure (21):	Curing of resin	
Figure (22):	Removal of plastic tube after curing	
Figure (23):	Storing specimens in distilled water for 24 hours	
Figure (24):	Samples in the thermo cycling device	
Figure (25):	Mono-beveled chisel shaped metallic rod parallel to the interface of the bonding surface*	
Figure (26):	Gold sputtered zirconia sample	

List of Figures Cont...

Fig. No.	Title Pag	e No.
Figure (27):	Gold sputter machine.	53
Figure (28):	Quanta scanning electron microscope.	
Figure (29):	SEM of untreated zirconia plate of the non age group (5000x)	d
Figure (30):	SEM of untreated cubic zirconia plate of the no aged group. (10000x)	
Figure (31):	SEM of untreated cubic zirconia plate of the age group. (5000x)	
Figure (32):	SEM of untreated cubic zirconia plate of the age group. (10000x)	
Figure (33):	SEM image of zirconia plate of the non aged groutreated with sandblasting.(5000x)	
Figure (34):	SEM image of zirconia plate of the non aged groutreated with sandblasting. (10000x)	
Figure (35):	SEM image of zirconia plate of the aged groutreated with sandblasting showed localize melting areas and micocracks. (5000x)	d
Figure (36):	SEM image of zirconia plate of the aged grou treated with sandblasting. (10000x)	p
Figure (37):	SEM image of zirconia plate of the non aged grou after application of Co2 laser at 10W/14m. (5000x)	J.
Figure (38):	SEM image of zirconia plate of the non aged grou after application of Co2 laser at 10W/14m. (10000x)	J.
Figure (39):	SEM image of zirconia plate of the aged grou after application of Co2 laser at 10W/14m showed crack and area agglomerated clusters (5000x)	p J s.
Figure (40):	SEM image of zirconia plate of the aged grou after application of Co2 laser at 10W/14m. (10000x)	p J.

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (41):	SEM image of zirconia plate of the non aged after application of CO2 laser at 20W/(5000x)	/10mJ.
Figure (42):	SEM image of zirconia plate of the non aged after application of CO2 laser at 20W/(10000x)	/10mJ.
Figure (43):	SEM image of zirconia plate of the aged after application of CO2 laser at 20W/(5000x)	/10mJ.
Figure (44):	SEM image of zirconia plate of the aged after application of CO2 laser at 20W/(10000x)	/10mJ.
Figure (45):	Bar chart representing mean and sta deviation values for shear bond strength of streatments regardless of aging	surface
Figure (46):	Bar chart representing mean and sta deviation values for shear bond strength before after aging regardless of surface treatment	ore and
Figure (47):	Bar chart representing mean and sta deviation values for shear bond strength of streatments before or after aging	surface
Figure (48):	Bar chart representing mean and standeviation values for shear bond strength before after aging with each surface treatment	andard ore and
Figure (49):	Digital microscopic image of untreated zeropresenting adhesive failure	irconia
Figure (50):		d with hesive
Figure (51):	Digital microscopic image of zirconia treate sandblasting technique representing mixed fa	
Figure (52):	Digital microscopic image of zirconia treate CO2 laser at 10 W representing adhesive fail	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (53):	Digital microscopic image of zirconia treate CO2 laser at 10W representing mixed failure	
Figure (54):	Digital microscopic image of zirconia trea CO2 laser at 20W representing adhesive fail	
Figure (55):	Digital microscopic image of zirconia treate CO2 laser at 20W representing mixed failure	
Figure (56):	Pie chart representing distribution of failure in sandblasting group before aging	
Figure (57):	Pie chart representing distribution of failure in sandblasting group after aging	
Figure (58):	Pie chart representing distribution of failure in laser 10 w before aging	
Figure (59):	Pie chart representing distribution of failure in laser 10 w after aging	
Figure (60):	Pie chart representing distribution of failure in laser 20 w before aging	
Figure (61):	Pie chart representing distribution of failure in laser 20 w after aging	

Introduction

The introduction of computer-aided-design and computer aided manufacturing (CAD/CAM) technology has provided us with high strength ceramic like zirconia with flexural strength 900-1200 MPa. Zirconia or zirconium dioxide (ZrO₂) is modified by addition of yttria (Y₂O₃) tetragonal polycrystal (Y-TZP). The addition of yttria is for stabilizing the crystal structure transformation during firing at high temperature and improved the physical properties of zirconia. (1)

The major complication of zirconia is their lack of translucency and their tenacious need for veneering that commonly subjected to chipping and cracking. So, by the introduction of nano zirconia that allow us to overcome the polycrystalline birefringence barrier and to manufacture a translucent, high strength monolithic restorations, like ultra-translucent zirconia that showed a significantly higher degree of translucency, which improved the esthetics. (2,3)

The dental team faces questions and decisions to choose the appropriate system and means of cementation. Several ceramic types demand different surface treatments and cementation procedures that will contribute to long-lasting restorations. Some zirconia restorations should be cemented with resin luting agents. These include zirconia restorations with limited mechanical retention that depends on resin bonding like resin-bonded fixed partial prostheses, bonded inlays/onlays, laminate veneers and crowns to teeth with short clinical crowns. (1,2)

The surface conditioning methods of the ceramic and the type of the luting cements have been proven to have a great influence on the bond strength of all ceramic restorations. However, the composition and the physical properties of zirconia differ from silica-based ceramics because it is a non-silicate ceramic. So, it requires alternative bonding techniques to achieve a strong, long term and durable bond. Recently, many techniques are being used such as sandblasting, laser, silica coating to address this problem and other approaches are under investigation. (4,5)

Lasers have been used for different purposes in dentistry among which conditioning tooth structure or restorative surfaces, studies employed different lasers such as Nd:YAG, Er:YAG and CO2 for surface modification of zirconia ceramic, and reported varying degree of success. The CO2 laser is generally employed for intraoral soft tissue surgery because of its great absorption. The wavelength of the CO2 laser (10600nm) is also well absorbed by ceramic materials, making it a suitable instrument for ceramic surface treatment. (6,7,8)

Therefore this study was carried out to evaluate the effect of surface treatment with sandblasting technique and CO2 laser technique with different parameters on the bond strength between cubic zirconia and MDP containing resin cement. In addition, to study their effect on the surface morphology and the shear bond strength between cubic zirconia and the resin cement.

Review of Literature

Zirconia based ceramics:

Development of dental ceramics introduced zirconia based ceramics which is a strong material with better fracture resistance and long term durability when compared to other dental ceramics. Zirconium oxide (ZrO₂) is a metal oxide that was known as a reaction product of heating the gem (zircon) by Martin Heirich Klaproth in 1989. (4)

Zirconia is a well- known polymorph that can exist in three metamorphs (phases) termed: monoclinic (m), tetragonal (t) and cubic (c). The unalloyed zirconia at room temperature has a monoclinic crystal structure. This phase is stable up to 1170°C. (9,10,11)

Different oxides are added to zirconia in order to stabilize the tetragonal and /or cubic phases like: Yttria (Y₂O₃), Magnesia (MgO), Calcia (CaO) and Ceria (CeO) to allow generation of multiphase materials known as partially stabilized Zirconia (PSZ). (9)

The conventional available zirconia restorations are yttriatetragonal zirconia polycrystals ceramics that consists of (2-3%) Y₂O₃ as a stabilizing agent. Also, it is characterized with transformation toughening property as considered to be the base of the high strength yttria-tetragonal zirconia polycrystal. The opaqueness is because of the large grain size and presence of porosities which is evidently seen at the microstructural level. This opaqueness has placed these restorations with poor esthetics when compared to lithium disilicate and leucite reinforced ceramics, so it should be veneered with a layer of porcelain. (4)