

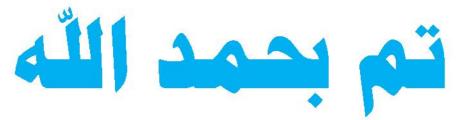
بسم الله الرحمن الرحيم

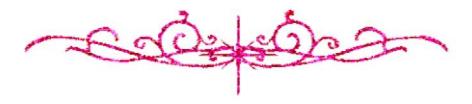
شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات


يجب أن


تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Relation between Serum Ferritin And Visceral Fat Mass In Ain Shams Medical Students

Thesis

Submitted for Partial Fulfilment of Master

Degree in Clinical Nutrition

By Doaa Atef Ismail

m.b.b.ch Faculty of Medicine – Ain Shams University

Under supervision of **Prof. Ehab Khairy Emam**

Professor of Paediatric Faculty of Medicine, Ain Shams University, Cairo, Egypt

Dr. Yasmin Gamal Abdou El Gendy

Assistant Professor of Paediatric Faculty of Medicine, Ain Shams University, Cairo, Egypt

> Faculty of Medicine, Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

I thank all who in one way or another contributed in the completion of this thesis.

First, I give thanks to God for protection and ability to do this work.

I would like to thank my supervisor, Prof. Dr. Ehab Khairy, Professor of Pediatrics, Ain Shams University for his great help, unwavering support and guidance throughout this thesis.

I would like also to extend my thanks to Dr. Yasmin Gamal, Assistant Professor of Pediatrics, Ain Shams University for her guidance and great help in the current study.

Finally my deepest gratitude goes to my family for their UN flagging love and unconditional support throughout my life.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	2
Review of Literature	
Serum Ferritin and its Physiological Role	3
Visceral Fat and its Pathological Impact	12
Relation Between Visceral Fat and Serum Fo	erritin 22
Subjects and Methods	24
Results	35
Discussion	45
Summary	49
Conclusion	50
Recommendations	51
Arabic Summary	
References	52

List of Abbreviations

Abb. Full term BIA Bioelectrical impedance analysis BMI.....Body mass index CDC...... Centers for Disease Control and Prevention Con A..... Concanavalin A CRP C-reactive protein DM..... Diabetes mellitus DNA Deoxyribonucleic acid DTH.....Delayed-type hypersensitivity DXA...... Dual energy X ray absorptiometry FFA Free fatty acids ID..... Iron deficiency IL-10..... Interleukin IL-6.....Interleukin 6 NAMS/ASU....... Nutrition Assessment of Medical Students of Ain Shams University NFkB.....nuclear factor kappa NNI National Nutrition Institute PHA.....Phytohaemagglutinin SAT..... Subcutaneous adipose tissue SD..... Standard Deviation SE..... Standard Error SHep..... Serum hepcidin TBF Total body fat VAT Visceral adipose tissue WC...... Waist circumference WHO...... World Health Organization WHR...... Waist-to-hip ratio

List of Tables

Table No.	Title	Page No.
Table (1):	Descriptive analysis demographic data	
Table (2):	Descriptive data regarding visce and Ferritin	` '
Table (3):	Descriptive data regarding food c	composition38
Table (4):	Relation between visceral fat wi	th gender 39
Table (5):	Correlation of Serum ferranthropometric measurements.	
Table (6):	Correlation of visceral fat ferritin	
Table (7):	Correlation of visceral fat composition	

List of Figures

Fig. No.	Title	Page No.
Figure (1):		27
Figure (2):		29
Figure (3):		31
Figure (4):		32
Figure (5):	Descriptive data regarding gender	36
Figure (6):	Shows relation between visceral f	
Figure (7):	Shows negative correlation be serum ferritin with BMI	
Figure (8):	Shows Positive correlation between ferritin with waist - hip ratio	
Figure (9):	Correlation between visceral faserum ferritin	
Figure (10):	Correlation between visceral fat a in food composition	

Abstract

Background: Adipocytes are not just storage organs for fat, they play a regulatory role in body homeostasis including iron metabolism. Concerns about the effect of visceral fat mass on serum ferritin has been raised as increase visceral fat mass accumulation may lead to sequestration of Fe within the reticuloendothelial system leading to decrease dietary Fe absorption from the intestine

Aim of the work: This study aims to detect relation between percentage of visceral fat mass and serum ferritin level in Sample of Ain Shams medical students.

Patients and Methods: this was a case—control study conducted on 150 medical students over 3 months they were divided into two subgroups: normal serum ferritin group and low serum ferritin group. All students were subjected to the detailed history and 24 hour dietary recall, anthropometric measurements, complete blood picture, measurement of serum ferritin =

Results: There were **significantly** negative association between visceral fat mass and serum ferritin also the serum ferritin showed **significant** positive correlations with BMI and waist hip ratio.

Conclusion: Higher visceral fat mass levels should be taken into account when assessing body Fe status and should probably be treated before providing dietary recommendations to correct low serum ferritin level.

Keywords: visceral fat mass, serum ferritin

INTRODUCTION

Body fat distribution is now recognized as an important predictor and modifier of many of the adverse health consequences of obesity. Individuals with an upper body fat pattern, reflecting an excess of visceral fat, have significantly greater risk for diabetes, hypertension, hypertriglyceridemia, ischemic heart disease, non-insulin-dependent diabetes some cancers, and death from all causes (*Ioannis et al.*, 2018).

Ferritin, an acute phase protein, is elevated in inflammatory conditions and its regulation is complex including number of factors such as: oxidative stress, inflammation, oncogenes, growth factors and other stimuli were implicated (*Humphreys et al., 2012*).

There is an indication that iron functioning in the maintenance of body weight and composition, and the relationship between adiposity and serum ferritin show a positive association, as excess fat may promote fatty acid oxidation and lead to oxidative stress, which has been shown to contribute to ferritin induction (*Alam et al*, 2015).

The bioavailability of Fe may be also linked to the chronic inflammation induced by increase total and visceral fat mass accumulation, as during fat deposition, reactivity of intracellular iron with lipids and increase lipid peroxidation occur causing sequestration of intracellular iron into the stores in order to reduce lipid peroxidation, leading to reduce functional iron and increase iron stores (*Pedro et al.*, 2013).

Aim of the Work ·

AIM OF THE WORK

This study aims to detect relation between percentage of visceral fat mass and serum ferritin level in Sample of Ain Shams medical students.

Chapter 1

SERUM FERRITIN AND ITS PHYSIOLOGICAL ROLE

Ferritin is present in most tissues as a cytosolic protein; small amounts of ferritin are secreted into the plasma.

It plays an important role in the storage of intracellular iron, the concentration of plasma (or serum) ferritin is positively correlated with the size of the total body iron stores in the absence of inflammation (*Dignass et al.*, 2018).

Normal level of serum ferritin:

Normal ferritin concentrations vary by age and sex. Concentrations are high at birth, rise during the first two months of life, and then fall throughout later infancy (*Cattaneo et al.*, 2010).

At about one year of age, concentrations begin to rise again and continue to increase into adulthood (*Cattaneo et al.*, 2010).

Beginning in adolescence, males have higher values than females; a trend that persists into late adulthood.

Values among men peak between 30-39 years of age and then tend to remain constant until about 70 years of age. Among women, serum ferritin values remain relatively low until menopause and then rise (*Cattaneo et al. 2010*).