

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

MOLECULAR GENETIC VARIABILITIES FOR LITTER SIZE TRAIT AMONG LOCAL GOAT BREEDS IN EGYPT

By

EMMANUEL CHOL KODIT AMALITH

B.Sc. in Animal Production, Upper Nile University, South Sudan (2005) M.Sc. in Tropical Animal Production, University of Khartoum, Sudan (2012)

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Animal Breeding)

Department of Animal production
Faculty of Agriculture
Ain Shams University

Approval Sheet

MOLECULAR GENETIC VARIABILITIES FOR LITTER SIZE TRAIT AMONG LOCAL GOAT BREEDS IN EGYPT

By

EMMANUEL CHOL KODIT AMALITH

B.Sc. in Animal Production, Upper Nile University, South Sudan (2005) M.Sc. in Tropical Animal Production, University of Khartoum, Sudan (2012)

This thesis for Ph.D. degree has been approved by:
Dr. Helmy Rashad Mohamed Metawi
Emeritus Head of Researches, Animal Production Research Institute
Doki.
Dr. Manal Mohamed Ahmed Sayed
Professor of Animal breeding, Faculty of Agriculture, Ain Shams
University.
Dr. Mohamed Abdel-Salam Rashed
Emeritus Professor of Genetics, Faculty of Agriculture, Ain Shams
University and Dean of High Institute for Agricultural Cooperation.
Dr. Mohamed Reda Ismail Anous
Emeritus Professor of Animal Husbandry, Faculty of Agriculture, Air
Shams University.
Date of Examination: / /2021

MOLECULAR GENETIC VARIABILITIES FOR LITTER SIZE TRAIT AMONG LOCAL GOAT BREEDS IN EGYPT

By

EMMANUEL CHOL KODIT AMALITH

B.Sc. in Animal Production, Upper Nile University, South Sudan (2005) M.Sc. in Tropical Animal Production, University of Khartoum, Sudan (2012)

Under the supervision of:

Dr. Mohamed Reda Ismail Anous

Emeritus Professor of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abdelsalam Rashed

Emeritus Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University and Dean of High Institute for Agricultural Cooperation.

Dr. Mohamed Hussein Sadek

Emeritus Professor of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University

ABSTRACT

Emmanuel Chol Kodit Amalith: Molecular Genetic Variabilities for Litter Size Trait among Local Goat Breeds in Egypt. Unpublished Ph.D. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2021.

Three main local Egyptian goat breeds i.e. Baladi, Zaraibi (famous for their high litter size) and Barki (known for its low litter size) were used to identify and differentiate the main three Egyptian local goat breeds and to assess genetic variation among and within these goat breeds related to litter size trait, considered as one of the most important economic traits, based on information at the DNA level using both the Cytochrome oxidase subunit I (COI) gene and the Fluorescently Amplified Fragment Length Polymorphism (F-AFLP) techniques. Blast (Basic Local Alignment Search Tool) results confirmed samples to be Capra hircus (100%) with no variation among the studied breeds. F-AFLP analysis of triplicates per breed produced 164 polymorphic loci. At the same time fixed and private bands varied among the three breeds; 47, 17 and 14 bands and 9, 19 and 27 bands for Baladi, Zaraibi and Barki, respectively. Analysis of Molecular Variance (AMOVA) showed 3.8% and 96.1% genetic variance among and within breeds, respectively. Population re-allocation showed that all samples of Baladi breed are outliers, Zaraibi breed one outlier and two hybrids and in Barki breed one hybrid, one outlier and one allocates itself. Private bands in excel filter (using virtual inspection in excel) showed fixed bands of 213bp molecular weight at locus 35 in both Baladi and Zaraibi breeds. These bands considered as genetic marker for prolific animals.

Keywords: COI sequencing, F-AFLP technique, Egyptian goats, Molecular variance and litter size.

ACKNOWLEDGEMENTS

Firstly, thanks given to almighty god who gave me good health and wellbeing that were necessary to complete this thesis. I would like to express my sincere gratitude and profound appreciation to my supervisor Prof. Dr. Mohamed Reda Ismail Anous, Professor Emeritus of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for the continuous support of my Ph.D. study and related research, for his patience, motivation and immense knowledge. His guidance and comments helped me in all the time of research and writing of this thesis. Besides my supervisor, I would like to thank Prof. Dr. Mohamed Abdelsalam Rashed, Professor Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University, for his kind supervision and who provided me an opportunity to join his team and who gave me access to his laboratory and research facilities and without his support comments and guidance it would not be possible to conduct this research. Also, great thanks to Prof. Dr. Mohmed Husein Sadek, Professor Emeritus of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his kind supervision, valuable guidance and for his insightful comments and continuous encouragement during the study.

I am also grateful to Dr. Mahmoud El Mosalamy, Associate Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University, who guided me and supported me technically at Molecular Genetic Laboratory from the beginning of the research up to end. Also, I would like to thanks my professors and instructors in the Department of Animal Production, Faculty of Agriculture, Ain Shams University, for their care on me whenever I have problem academically or socially and for providing animals of the study.

I wouldn't forget to thanks all staffs who accompanied me and guided me in the Molecular Genetic Laboratory, Department of Genetics, Faculty of Agriculture, Ain Shams University: Dr. HallaZugli, Dr. Hajer M, Dr. Samah M, Mr. Yousr Fetch and Mr. Mostafa M. from whom I have acquired laboratory technical knowledge from dealing with samples, instruments and safety up to obtaining result and analysis, really they were practical trainers from whom I acquired valuable skills.

An extended thanks to the Animal Breeding Department in the Institute of Desert Researches especially Prof. Dr. Samir Elsheik and Dr. Adel Elhouseny for helping me in collection of Barki breed samples from North costal region. Unlimited thanks also go to my colleague Ibrahim Shawki, Institute of Desert Researches, for helping me how to extract DNA and supporting me with some chemicals. Moreover, I wouldn't forget to thank Dr. Guda Fatehi and Prof. Dr. Nasr Elberdini, Department of Animal Production, Faculty of Agriculture, Ain Shams University and my colleague Mr. Amjed who help me in sampling procedure.

Furthermore, great thanks to my brothers and sisters, Engin. Emmanuel Odiang, Engin. Poul Okuc, Engin. Gabrial Zacheria, Engin. Ochay Chol, Dr. Bushra Younan and Dr. Girgis Nagy, who have pushed me financially to complete this costly work. Finally, thanks go to my nuclear family my wife Lucia James and my children for encouraging me morally while I been isolated far away from them five years occupied with my study.

CONTENTS

Title	Page
LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF ABBREVIATION	VII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Goat Breeds in Egypt	3
2.1.1. Zaraibi goat (Nubian goat)	3
2.1.2. Baladi goat	4
2.1.3. Barki goat (Sahrawy)	4
2.2. Litter size in goat	4
2.3. Factors affecting litter size	6
2.3.1. Breed	6
2.3.2. Non genetic factors	6
2.3.2.1. Management system	7
2.3.2.2. Dam age	7
2.3.2.3. Body weight	7
2.3.2.4. Season	7
2.3.2.5. Nutrition	8
2.4. Molecular markers	8
2.5. DNA Sequencing	10
2.5.1. Maxam-Gilbert procedures	10
2.5.2. Enzymatic procedures	11
2.5.3. Next Generation sequencing (NGS) technique	12
2.5.4. Second Generation Sequencing (SGS) Technology	12
2.5.5. Third generation sequencing or single molecule	
sequencing (TGS) technique	13
2.5.6. Fourth Generation Sequencing Technology	13
2.5.7. Nanopore DNA sequencing with Mycobaterium	
smegmatis porin A (MspA)	14
2.5.8. DNA Nano-ball sequencing	14

2.5.8.1. DNA Nano-ball sequencing uses	
2.6.1. Amplify Fragment Length Polymorphisms (AFLP)	
2.6.2. Cytochrome oxidase sub-unit I (COI) technique	15
3. MATERIALS AND METHODS	17
3.1. Population structure and origin of the sampled flock	17
3.2. Breeding system	17
3.3. Blood samples collection	17
3.4. DNA extraction	18
3.5. Genomic DNA gel preparation and extraction	18
3.5.1. Gel documentation for genomic DNA 3.5.2. PCR	
protocol for COI	19
3.5.2.1. Reaction of PCR	19
3.5.2.2. PCR thermal cycling conditions	19
3.6. Sequencing primer properties	20
3.7. Purification	21
3.8. PCR Agarose Electrophoresis	21
3.9. Sequencing	21
3.10. Fluorescent Amplified Fragment Length Polymorphism	
method (fAFLP)	22
3.10.1. NanoDrop	22
3.10.2. DNA concentration	23
3.11. AFLP protocol	23
3.11.1. Adaptors mixing	24
3.11.2. Genomic DNA cutting	24
3.11.2.1. Steps of restriction and ligation	24
3.11.2.2. Preparation of adaptors and primers	25
3.11.2.2.1. Adaptors of EcoRI	25
3.11.2.2.2. Mse I adaptor	25
3.11.3. Pre-selective PCR	25
3.11.4. Selective PCR amplification	26
3.11.4.1. PCR reaction	27
3.11.4.2. Conditions of PCR	27

3.11.4.3 Separation of PCR product	28
3.11.4.4.Electrophoresis condition, visualization and gel	
documentation	28
3.11.5. Selective PCR reaction preparation for multiplex	
fragment analysis	29
3.11.6. F-AFLP data analysis	29
3.11.6.1. Fragment analysis	29
3.10.6.2. Genetic diversity analysis	30
3.11.6.3. Re- allocation of population	31
3.11.6.4. Whole dataset binary analysis	31
3.12. COI Data analysis	31
3.12.1. COI sequence analysis	31
4. RESULTS AND DISCUSSION	32
4.1. Litter size means values for studied Egyptian goat breeds	32
4.2. COI amplification and sequencing	33
4.2.1. PCR gel picture	33
4.2.2. Sequence alignment	34
4.3. Blast result (each sample give 5 blast samples for each	
breed)	35
4.4. Phylogenetic tree of COI gene	35
4.4.1. Phylogenetic tree of the three breeds	35
4.4.2. Chromatogram sequence resulted picture of the three	
breeds	37
4.5. DNA concentration and purity	38
4.6. F-AFLP results AFLP	41
4.6.1. Peaks scoring statistics and DNA polymorphism	41
4.6.1.1. Dyes Figures and bin frequency	41
4.6.2. Fixed and private bands	43
4.6.3. Genetic marker alleles based on group	45
4.6.4. Population analysis	46
4.6.4.1. Population re-allocation	46
4.6.5. AMOVA results	

5. SUMMARY	50
6. REFERENCES	55
7. APPENDIX	68
Arabic Summary	

LIST OF TABLES

Table	Tittle	Page
No.		
1.	COI universal primer reaction	20
2.	PCR thermal conditions cycling conditions	20
3.	Nano Drop models	23
4.	DNA quantities	23
5.	Adaptors of EcoRI	25
6.	Adaptors of MseI	25
7.	Pre-selective PCR Program	26
8.	Sequences (5′-3′) of primer	26
9.	PCR condition	27
10.	PCR general program	28
11.	Letter size means in studied Egyptian breeds	30
12.	Blast results	36
13.	DNA concentration & purity	39
14.	DNA concentration & purity descriptive variable	40
15.	AFLP scoring statistics for three primer pairs	41
16.	Fixed and private bands for the three goat breeds	44
17.	Genetic marker	46
18.	Re-allocation of the three breeds population	47
19.	Genetic differentiation through AMOVA	47

LIST OF FIGURES

Fig. No.	Tittle	Page
1.	Genomic DNA-PCR gel picture	33
2.	Sequence alignment	34
3.	Phylogenetic tree for the three breeds	37
4.	Baladi chromatogram sequence	37
5.	Zaraibi chromatogram sequence	38
6.	Barki chromatogram sequence	38
7.	Max, min.and average DNA purity at	40
	260\280 wave length for the three breeds	
8.	Fixed and private bands in the three breeds	42
9.	Scored bands of blue dye gel image	43
10.	Scored bands of green dye gel image	44
11.	Scored bands of yellow dye gel image	44
12.	Genetic marker band\loci in the three breeds	46
13.	Variation percentage among & within breeds	48