

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

SOME BIOLOGICAL AND ECOLOGICAL ASPECTS OF EUZOPHERA OSSEATELLA ON CERTAIN SOLANACEAE PLANTS IN EGYPT

By

SAMAR MAGDY MOHAMED ABBAS

B.Sc. Agric. Sc. (Entomology), Fac. Agric., Ain Shams University, 2015

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

SOME BIOLOGICAL AND ECOLOGICAL ASPECTS OF EUZOPHERA OSSEATELLA ON CERTAIN SOLANACEAE PLANTS IN EGYPT

By

SAMAR MAGDY MOHAMED ABBAS

B.Sc. Agric. Sc. (Entomology), Fac. Agric., Ain Shams University, 2015

This thesi	s for M.Sc. d	egree has b	een a	approved by	y:	
Dr. Ahme	ed Raouf Han	ned				
Head	Researches	Emeritus	of	Economic	Entomology,	Plant
Protec	ction Research	Institute, A	gric	ultural Resea	arch Center	
Dr. Moha	med Atef Raj	jab Daoud				
Prof.	Emeritus of E	conomic En	tome	ology, Facul	ty of Agricultur	e, Ain
Sham	s University.					
Dr. Sawsa	an Mohamed	Abd El-Me	geed	l Ali		
Assoc	eiate Prof. of	Economic	Ento	omology, Fa	culty of Agric	ulture,
Ain S	hams Univers	ity.				
Dr. Abd I	El- Mohsen M	ohamed A	bd E	l- Kader H	ekal	
Prof.	Emeritus of E	conomic En	tome	ology, Facul	ty of Agricultui	re, Ain
Sham	s University.					
Date	of Examinati	on: 17/11/2	020			

SOME BIOLOGICAL AND ECOLOGICAL ASPECTS OF EUZOPHERA OSSEATELLA ON CERTAIN SOLANACEAE PLANTS IN EGYPT

By

SAMAR MAGDY MOHAMED ABBAS

B.Sc. Agric. Sc. (Entomology), Fac. Agric., Ain Shams University, 2015

Under the supervision of:

Dr. Abd El- Mohsen Mohamed Abd El- Kader Hekal

Prof. Emeritus of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Sawsan Mohamed Abd El-Megeed Ali

Associate Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Samar Magdy Mohamed Abbas: Some biological and ecological aspects of *Euzophera osseatella* on certain Solanaceae plants in Egypt. Unpublished M. Sc. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2020.

Some biological and ecological aspects were studied on the eggplant stem borer, Euzophera osseatella Treit. (Lepidoptera: Pyralidae) under laboratory and controlled conditions. The mean generation time (T) of E. osseatella averaged 54.22 days. The net reproductive rate (R_o), the intrinsic rate of increase (r_m) and the finite rate of increase $(\exp.rm/\lambda)$ were 28.09, 0.062 and 1.063, respectively. The generation doubling time (Dt) reached 14.01 days. The development zero of egg, larva, pupa, immature stages, preoviposition period and generation duration was 9.8, 13.9, 11.1, 13.5, 18.2 and 12.8°C, respectively. The corresponding thermal units averaged 119.0, 413.8, 301.9, 762.5, 18.2 and 854.8 DDs. E. osseatella had four annually field generations at Damanhur region in El-Beheira Governorate. The larval hibernation began from 18th Oct. to 24th Feb., took 129 days and required thermal units of 414.5 DDs. The oviposition period was the longest (11.6 days) at 20°C, while it was the shortest (1.6 days) at 30°C. The total number of eggs/female reached 66.6, 148.6, 138.2 and 44.8 at 15, 20, 25 and 30°C, respectively. The female lived 19.0, 26.2, 6.6, 4.2 and 2.4 days at 15, 20, 25, 30 and 35°C, respectively. The male longevity was the longest (23.2 days) at 20°C, whereas it was the shortest (2.8 days) at 35°C. The longest oviposition period (11.6 days) was in females offered 10% sugar solution and the shortest (2.8 days) was in those deprived of the food. The fecundity amounted to 148.6, 145.0 and 68.6 eggs/female supplied with 10% sugar solution, water and kept fasting, respectively. The female survived 26.2, 13.6 and 10.0 days at the three previous regimes, respectively. The longest male longevity (23.2 days) was when provided with 10% sugar solution and the shortest (7.8 days) was when left starved. The total number of emerged moths was 24, 21, 15, 14, 14 and 12 moths on Nov., Dec., Jan., Feb., Mar. and Apr., respectively during 2017/2018. The seasonal mean number of emerged moths amounted to 16.7. The sex ratio of males to females was 1:1, 1:0.9, 1:0.9, 1:0.6, 1:0.4 and 1:0.3 in the previous six months, respectively. The general mean of the sex ratio of males to females reached 1:0.7. The duration of the male emergence lasted 17.4, 29.5, 29.8, 24.4, 14.2 and 12.9 days on Nov., Dec., Jan., Feb., Mar. and Apr. at 24.7, 23.3, 22.8, 24.2, 26.7 and 27.3°C, respectively. The corresponding duration of the female emergence took 18.7, 30.1, 26.4, 24.2, 13.5 and 13.7 days in the above mentioned six months at the same temperatures. The seasonal mean duration of the male (21.4 days) was approximately equal to that of the female (21.1 days). There was a highly significant difference among mean durations of each sex. The total number of emerged moths was 20, 18, 15, 14, 13 and 11 moths on Nov., Dec., Jan., Feb., Mar. and Apr., respectively during 2018/2019. The general mean number of emerged moths reached 15.2. The sex ratio of males to females reached 1:1, 1:1, 1:0.9, 1:0.6, 1:0.4 and 1:0.4 in the above mentioned six months, respectively. The seasonal mean of the sex ratio of males to females was also 1:0.7. The period of the male emergence took 17.7, 27.9, 29.3, 22.4, 13.7 and 12.5 days on Nov., Dec., Jan., Feb., Mar. and Apr. at 28.3, 23.9, 21.7, 22.8, 24.8 and 26.3°C, respectively. The corresponding period of the female emergence lasted 19.6, 29.9, 25.9, 21.2, 9.5 and 13.3 days in the previous six months at the same temperatures. The general mean time of the male (20.6 days) was nearly similar to that of the female (19.9 days). Mean durations of any sex also showed a highly significant difference. The larval infestation rate in eggplant stems reached 100, 100, 85.7, 83.3, 66.7 and 50.0% on Nov., Dec., Jan., Feb., Mar. and Apr., respectively during 2017/2018. The general mean of the infestation percentage was 81%. The infestation percentage was 100, 85.7, 85.7, 83.3, 50.0 and 33.3% on Nov., Dec., Jan., Feb., Mar. and Apr., respectively during 2018/2019. The seasonal mean of the infestation rate reached 73%. Pimpla roborator Fab., Blaesoxipha (Agriella) algeriensis (Townsend), Drosophila busckii Coq. and Anatrichus erinaceus Loew were surveyed parasitizing E. osseatella larvae in eggplant stems. P. roborator, D. busckii and A. erinaceus are solitary ectoparasitoids, while B. algeriensis is a solitary endoparasitoid. The total number of emerged adults of *P. roborator*, *B. algeriensis*, *D.* busckii and A. erinaceus was 4, 1, 3 and 1 on Nov., Nov., both Feb. and Mar. as well as Nov., respectively during 2017/2018. The general mean number of these parasitic species reached 0.7, 0.2, 0.5 and 0.2 adult, respectively. The corresponding sex ratio of males to females of these parasitoids amounted to 1:1, 0:1, 1:0.5 and 0:1. The total number of emerged adults of P. roborator, B. algeriensis, D. busckii and A. erinaceus reached 2, 1, 1 and 1 on Nov., Dec., Feb. and Dec., respectively during 2018/2019. The seasonal mean number of these parasitic insects was 0.3, 0.2, 0.2 and 0.2 adult, respectively. These parasitoids had the corresponding sex ratio of males to females of 1:1, 0:1, 0:1 and 0:1. The parasitism percentage of P. roborator, B. algeriensis, D. busckii and A. erinaceus on E. osseatella larvae reached 13.3, 3.3, 19.2 and 3.3% on Nov., Nov., both Feb. and Mar. as well as Nov., respectively during 2017/2018. The general mean of the parasitism rate for these parasitoid species amounted to 2.2, 0.6, 3.2 and 0.6%, respectively. P. roborator, B. algeriensis, D. busckii and A. erinaceus showed the parasitism percentage of 9.1, 4.5, 6.7 and 4.5% on Nov., Dec., Feb. and Dec., respectively during 2018/2019. The corresponding seasonal mean of the parasitism rate was 1.5, 0.8, 1.1 and 0.8%.

Key words: Eggplant, biological aspects, ecological aspects, *Euzophera* osseatella, *Pimpla roborator*, *Blaesoxipha algeriensis*, *Drosophila busckii*, *Anatrichus erinaceus*.

ACKNOWLEDGEMENT

First at all great thanks are to Allah, who guide me to this way and assist me in all my life. All words, all feelings and all praise are not enough to thank Allah.

The authoress wishes to express her deep gratitude to **Dr. Abd El-Mohsen M.A. Hekal**, Prof. Emeritus of Economic Entomology, Plant Protection Department, Faculty of Agriculture, Ain Shams University (the principal supervisor) for suggesting this study, designing the experiments and writing the manuscript.

Iam grateful to **Dr. Sawsan M.A. Ali**, Associate Prof. of Economic Entomology, Plant Prot. Dept., Fac. of Agric., Ain Shams Univ. for her supervision.

I extend my deep appreciation to **Dr. Mohamed A.R. Daoud**, Prof. Emeritus of Economic Entomology, Plant Prot. Dept., Fac. of Agric., Ain Shams Univ. for his financial support.

I extend my deep appreciation to **Dr. Kadry W. Mahmoud,** Prof. Emeritus of Pesticides Chemistry and Toxicology, Plant Prot. Dept., Fac. of Agric., Ain Shams Univ. for providing the required incubators.

The authoress is greatly indebted to **Dr. Magdy S. El-Hawagry**, Prof. of Entomology, Entomology Department, Faculty of Science, Cairo University for identifying the dipterous specimens.

I'm grateful to **Ahmed F.M. Badr,** Assistant Lecturer of Economic Entomology, Plant Prot. Dept., Fac. of Agric., Ain Shams Univ. for providing eggplant stems.

I really could not reach this position without the love and support of my dear family, who offered me continuous help during this study. Many thanks are due to my deceased Father, **Magdy Mohamed Abbas** for his financial and moral support.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. E. osseatella	3
1.1. Biological aspects	3
1.2. Ecological aspects	6
2. Parasitoids of <i>E. osseatella</i>	8
2.1. Biological aspects	8
2.2. Ecological aspects	10
III. MATERIALS AND METHODS	13
1. Biological aspects of <i>E. osseatella</i>	13
1.1. Life table parameters	13
1.1.1. Rearing	13
1.1.2. Biology	13
1.1.3. Life table	14
1.2. Zero of development	14
1.2.1. Experimental design	14
1.2.2. Linear regression method	15
1.2.3. Thermal constant	15
1.2.4. Predicting annual field generations	15
1.2.5. Predicting termination of larval hibernation	16
1.3. Effect of temperature on moths	16
1.4. Effect of nutrition on moths	17
2. Ecological aspects of <i>E. osseatella</i>	17
2.1. Population fluctuations of moths	17
2.2 Population fluctuations of parasitoids	17

	Pag
2.3. Rearing of <i>P. roborator</i>	18
IV. RESULTS AND DISCUSSION	19
1. Biological aspects of <i>E. osseatella</i>	19
1.1. Life table parameters	19
1.1.1. Biology	19
1.1.2. Life table	20
1.2. Zero of development	22
1.2.1. Egg stage	22
1.2.2. Larval stage	23
1.2.3. Pupal stage	24
1.2.4. Immature stages	26
1.2.5. Preoviposition period	28
1.2.6. Generation period	28
1.2.7. Predicting annually field generations	30
1.2.8. Predicting termination of larval hibernation	32
1.3. Effect of temperature on moths	34
1.4. Effect of nutrition on moths	3'
2. Ecological aspects of <i>E. osseatella</i>	40
2.1. Population fluctuations of moths	40
2.1.1. The first season (2017/2018)	40
2.1.2. The second season (2018/2019)	43
2.2. Infestation rates	40
2.2.1. The first season (2017/2018)	40
2.2.2. The second season (2018/2019)	40
2.3. Population fluctuations of parasitoids	47
2.3.1. The first season (2017/2018)	5 1
2.3.2. The second season (2018/2019)	5 1
2.4. Parasitism rates	5 1
2.4.1. The first season (2017/2018)	5 1
2.4.2. The second season (2018/2019)	52
2.5. Rearing of <i>P. roborator</i>	54

	Page
V. SUMMARY	58
VI. REFERENCES	66
ARABIC SUMMARY	

LIST OF TABLE

No.		Page
1.	Duration and mortality of E. osseatella immature stages	
	reared on potato tubers and sex ratio of emerged moths at	
	27±2°C and 65±5 % R.H	19
2.	Ovipositional periods, fecundity and longevity of E.	
	osseatella moths fed on 10% sugar solution at 27±2°C and	
	65±5 % R.H	20
3.	Life table parameters of E. osseatella females fed on 10%	
	sugar solution at 27±2°C and 65±5 % R.H	20
4.	Mortality, mean duration, zero of development and thermal	
	units required for E. osseatella eggs at constantly different	
	temperatures and 65±5% R.H	23
5.	Mortality, mean duration, zero of development and thermal	
	units required for E. osseatella larvae reared on potato	
	tubers at constantly different temperatures and $65\pm5\%$	
	R.H	24
6.	Mortality, mean duration, zero of development and thermal	
	units required for E. osseatella pupae at constantly different	
	temperatures and 65±5% R.H	25
7.	Mortality, mean duration, zero of development and thermal	
	units required for E. osseatella immature stages reared on	
	potato tubers at constantly different temperatures and	
	65±5% R.H	27
8.	Mean duration, zero of development and thermal units	
	required for the preoviposition period of E. osseatella	
	moths fed on 10% sugar solution at constantly different	
	temperatures and 65±5% R.H	28
9.	Mean duration, zero of development and thermal units	
	required for the generation period of E. osseatella at	
	constantly different temperatures and 65±5% R.H	29

No.		Page
10.	Biological aspects, zero of development and thermal units	
	required for the generation period of E. osseatella at	
	constantly different temperatures and 65±5% R.H	31
11.	Predicting annually field generations of E. osseatella at	
	Damanhur region in El-Beheira Governorate based on	
	accumulated thermal units	32
12.	Predicting termination of larval hibernation of E.	
	osseatella at Damanhur region in El-Beheira Governorate	
	based on accumulated thermal units	33
13.	Ovipositional periods, fecundity and longevity of E.	
	osseatella moths fed on 10% sugar solution at constantly	
	different temperatures and 65±5 % R.H	35
14.	Ovipositional periods, fecundity and longevity of E.	
	osseatella moths fed on different diets at 20° C and 65 ± 5 %	
	R.H	38
15.	Population fluctuations and infestation rates of E.	
	osseatella in deserted eggplant stems collected from	
	Damanhur region in El-Beheira Governorate during	
	2017/2018	41
16.	Population fluctuations and infestation rates of E.	
	osseatella in deserted eggplant stems collected from	
	Damanhur region in El-Beheira Governorate during	
	2018/2019	44
17.	Population fluctuations and parasitism rates of E.	
	osseatella parasitoids in deserted eggplant stems collected	
	from Damanhur region in El-Beheira Governorate during	
	2017/2018	49
18.	Population fluctuations and parasitism rates of E.	
	osseatella parasitoids in deserted eggplant stems collected	
	from Damanhur region in El-Beheira Governorate during	
	2018/2019	50