

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

A LOW-POWER MULTI-BAND NB-IOT RECEIVER WITH HIGHLY LINEAR RF FRONT END

By

Hassan Ali Hassan Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Electronics and Communications Engineering**

A LOW-POWER MULTI-BAND NB-IOT RECEIVER WITH HIGHLY LINEAR RF FRONT END

By

Hassan Ali Hassan Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Ahmed N. Mohieldin Dr. Mohamed M. Aboudina

Professor

Associate Professor

Electronics and Communications Engineering
Faculty of Engineering, Cairo University

Electronics and Communications Engineering Faculty of Engineering, Cairo University

Prof. Dr. Ahmed A. El-Adawy

Professor

Electronics and Communications Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY
GIZA,EGYPT
2021

A LOW-POWER MULTI-BAND NB-IOT RECEIVER WITH HIGHLY LINEAR RF FRONT END

By

Hassan Ali Hassan Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Ahmed N. Mohieldin,	Thesis Main Advisor
Dr. Hassan Mostafa,	Internal Examiner
Prof. Dr. Ahmed H. Madian,	External Examiner
Professor, Nile University	

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY GIZA,EGYPT 2021

Engineer's Name: Hassan Ali Hassan Ali

Date of Birth: 05/01/1993 **Nationality:** Egyptian

E-mail: hassan ali 93@hotmail.com

Phone: 0111-7014763

Address: EL-Mahata, Giza, Giza

Registration Date: 01/03/2016 **Awarding Date:** -/-/2021

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Ahmed N. Mohieldin Dr. Mohamed M. Aboudina Prof. Dr. Ahmed A. El-Adawy

Examiners:

Prof. Dr. Ahmed N. Mohieldin

Dr. Hassan Mostafa

Prof. Dr. Ahmed H. Madian

Professor, Nile University

(Thesis Main Advisor) (Internal Examiner)

(External Examiner)

Title of Thesis:

A Low-Power Multi-band NB-IoT Receiver with Highly Linear RF Front End

Key Words:

NB-IoT; sensitivity; Noise Figure; linearity; blocker

Summary:

This Thesis presents the system and circuit level design of a NB-IoT receiver (RX) based on 3GPP Technical Specification (TS) 36.101. Required sensitivity is -108dBm in 200kHz bandwidth, while expected blocker level is -15dBm at ±85MHz offset from required signal. This places a restriction on both gain and filtration such that gain shall be large to be able to receive low level wanted signal while filtration shall be large such that all RX chain blocks operate linearly. This design targets serving many NB-IoT operation bands, namely from 400MHz to 2.3GHz. So no off-chip filter is used. This dictates large linearity specification on the RF front end to avoid desensitization by -15dBm out-of-band blockers (OOBs). Large linearity specification leads to large power consumption. A solution is proposed to reduce power consumption of the RF front end, while achieving high gain and high linearity. The proposed RF front end provides 29.5dB gain and -10.9dBm IIP3 while consuming 2mW from a single 1.1V power supply. The solution includes adding gain programmability to conventional resistive feedback LNA to relax the trade-off between linearity and power consumption. The RF front end is designed using a 40nm CMOS technology and occupies an area of $0.2mm^2$

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Hassan Ali Hassan Ali	Date:
Signature:	

Acknowledgements

First and foremost, I thank ALLAH, the most gracious, the ever merciful for helping me finishing this work.

I want to thank all those, who helped me by their knowledge and experience. I will always appreciate their efforts. I would like to offer my sincere thanks to my supervisors Dr. Mohamed Aboudina, Dr. Ahmed Nader, and Dr. Ahmed Aladawy. I owe them for valuable supervision, continuous encouragement, useful suggestions, and active help during this work.

I would like, also, to thank my examiners Dr, Hassan Mostafa and Dr, Ahmed Madian for their valuable comments and suggestions.

My sincere appreciation and gratitude to my family and my wife for their help and patience during the preparation of this work.

Author wish to acknowledge Si-Vision for supporting system design, especially Mohamed Tawfik and Amr Ahmed for helping in system modelling.

Table of Contents

Di	sclair	ner		i
A	cknov	vledgem	nents	ii
Ta	ble o	f Conte	nts	iii
Li	st of T	Fables		vii
Li	st of l	Figures		viii
Li	st of A	Abbrevi	ations	X
Li	st of l	Publicat	tions	xiii
Al	ostrac	et		xiv
1	INT	RODU	CTION	1
	1.1	NB-Io	T Applications	1
	1.2	Opera	tion Schemes	1
	1.3	Statem	nent of The Problem	3
	1.4	Thesis	Structure	3
2	TEC	CHNICA	AL OVERVIEW AND LITERATURE REVIEW	4
	2.1	Detect	ion of Low and High Power Signals	5
	2.2	Reject	ing Blockers	6
		2.2.1	Desensitization	6
		2.2.2	Intermodulation	6
		2.2.3	Aliasing	7
	2.3	Demo	dulation	7
		2.3.1	Amplitude Modulation	7
		2.3.2	Frequency Modulation	7
		2.3.3	Phase Modulation	7
	24	Receix	ver Architectures	8

		2.4.1 Heterodyne Receivers	8
		2.4.2 Direct-Conversion Receivers	8
		2.4.3 Low-IF Receivers	10
	2.5	Literature Review	11
	2.6	Conclusion	15
3	SYS	TEM DESIGN	17
	3.1	Channel Bandwidth	17
	3.2	Operation Bands	17
	3.3	Sensitivity Requirements	17
	3.4	Maximum Signal Power	17
	3.5	Adjacent Channel Selectivity (ACS)	19
	3.6	In-Band Blocker Limits	19
	3.7	Out-of-Band Blocker Limits	20
	3.8	Intermodulation Limits	21
	3.9	This Work	21
	3.10	RX Gain	22
	3.11	Sensitivity	24
	3.12	NF Distribution	24
	3.13 RX Maximum Input And ACS Requirements Toleration		
	3.14	RX Chain Filtration	28
	3.15	RX Chain Linearity	30
	3.16	Summary	33
4	RF F	FRONT END DESIGN	34
	4.1	LNA Literature Review	35
		4.1.1 Gain and NF Versus Power Trade-off	35
		4.1.2 Input Impedance Versus Power and Area Trade-off	36
		4.1.3 Linearity Versus Power Trade-off	36
		4.1.4 LNA Stability Versus Architecture	36
		4.1.5 LNA Architectures	36
		4.1.5.1 Conventional Amplifiers	36
		4 1 5 2 Amplifiers with Noise cancellation	38

		4.1.5.3 Amplifiers with Gain or Band Switching	39
	4.2	LNA Design	39
	4.3	Mixer Literature Review	41
		4.3.1 Low Conversion Gain	42
		4.3.2 LO Leakage	42
		4.3.3 On Resistance	42
		4.3.4 Mixer Input to Output Leakage	42
		4.3.5 Down-Conversion of Blockers	42
		4.3.6 Doubling of Noise	43
		4.3.7 Mixer Topologies	43
		4.3.7.1 Single-Balanced Mixers	43
		4.3.7.2 Double-Balanced Mixers	43
		4.3.7.3 Active Mixers	44
	4.4	Mixer Design	44
	4.5	Design Challenge	48
	4.6	Complete Solution	48
	4.7	Bias Generation and Process Detection	48
	4.8	Conclusion	51
5	SIM	IULATION RESULTS 5	52
	5.1	Typical Simulation Results	53
	5.2	Corner Simulation Results	55
	5.3	General Layout Considerations	56
	5.4	LNA Layout	56
	5.5	Mixer Layout	57
	5.6	Bias and PD Layout	58
	5.7	RF Front End Complete Layout	59
	5.8	Post-Layout Simulation Results	59
	5.9	Conclusion	59
6	CON	NCLUSION AND FUTURE WORK	67
	6.1	Contributions	67
	6.2	Future Work	67

References		69
Appendix A	COMPONENTS SIZING	71

List of Tables

2.1	Literature review summary	16
3.1	NB-IoT UE Reception Operation Bands Alongside LTE	18
3.2	NB-IoT UE Reception Operation Bands Alongside NR	19
3.3	Noise Contribution of Different Blocks	26
3.4	Summary of specifications of various blocks	33
5.1	Summary of variations of combined gain, NF, and IIP3 of RF front end across corners	55
5.2	Comparison with other RF front end circuits.	
A.1	Values of resistors and capacitors.	73
A.2	Sizing of transistors.	73
A.3	Sizing of transistors.	74

List of Figures

1.1	Comparison between different standards	2
2.1	RX chain block diagram of a generic heterodyne receiver	9
2.2	Typical direct-conversion receiver	10
2.3	Typical low-IF receiver	11
2.4	N-path filtering receiver.	12
2.5	2-stage 3-path filtering receiver.	13
2.6	Wide-band inductorless receiver.	14
2.7	Wide-band inductorless receiver with RF filter and far blockers rejection.	14
2.8	Wide-band inductorless receiver with DTC	15
2.9	Full duplex receiver.	15
2.10	IQ mismatch enhanced receiver.	16
3.1	Possible in-band blockers.	20
3.2		21
3.3		22
3.4	RX chain block diagram showing various blocks and their position in the	
	RX chain.	23
3.5		25
3.6	SNR at every block input	27
3.7	Gain of LNA, mixer, and filter stages in Ranges A-J.	28
3.8	Range C bounds calculation.	29
3.9	Filter overall transfer function.	30
3.10	Block OIM3 model	31
4.1	Proposed receiver chain.	35
4.2		37
4.3		38
4.4		40
4.5		40
4.6		41
	~~~~~ IIII/IVI, , , , , , , , , , , , , , , , , , ,	. 1