

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Scientific Computing Department Faculty of Computer and Information Sciences Ain Shams University

Video steganography using Redundant Discrete Wavelet Transform And QR Factorization

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

Reham Ahmed Abd-EL Hameed Aly

Teaching Assistant at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Under Supervision of

Prof. Dr. Howida Abdel-Fattah Saber Shedeed

Head of Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Prof. Dr. Hala Mousheer Ebied

Vice dean of student affairs, Faculty of Computer and Information Sciences, Ain Shams University

Dr. Maryam Nabil Al-Berry

Assistant Professor at Scientific Computing Department, Faculty of Computer and Information Sciences, Ain Shams University

Acknowledgment

First of all I thank Allah, the most merciful and gracious, who gave me the knowledge, patience and strength to complete this thesis, and blessed me with his inspired gifts to overcome the obstacles I encountered.

I would like to express my deep gratitude to my, Prof. Dr. Howida Shedeed whose expertise was invaluable and for her technical support, patience, motivation, encouragement and guidance, Prof. Dr. Hala Mousheer for her support and guidance and Dr. Maryam Nabil for the technical and scientific help, continuous supportive guidance. I am deeply thankful.

In addition, I would like to thank my family for their wise counsel and sympathetic ear. You are always there for me they are the most supportive family. I would like to thank my mother and my father who have devoted themselves to support me in my whole life, and my husband for always being by my side in the downs and ups. Thanks my sister and my brothers for your help and support.

I would also like to thank the best friend Hadeer El-Saadawy for always being by my side. Thanks for your help all the time. I am really grateful to have you in my life.

I would like to thank all my professors, colleagues who kept on encouraging me. Thank you for being in my life.

Abstract

Internet simplified digital data transfer. This data needs to be secured; so securing digital data becomes an important concern. There are different techniques for data security, namely, cryptography, watermarking and steganography.

Steganography provides security for data by embedding it into a cover and concealing it.

There are different steganography approaches were proposed. These approaches differ in the type of the cover and the secret data, the size of the secret data that can be embedded and the algorithm's robustness to keep the secret data safe against attacks.

In this thesis, a steganography technique is introduced. This technique depends on Stationary Wavelet Transform (SWT) and hybrid-matrix decomposition techniques (Singular Value Decomposition (SVD) and QR factorization) to conceal a video in another video. The SWT is one of the Redundant Discrete Wavelet Transform (RDWT) implementations.

A gray-scale video is used as a secret message. One resolution SWT is applied for the secret video frames. Three- resolutions 3D SWT is then applied on the Y channel of the video frames, resulting in eight sub-bands. One of the sub-bands is selected to be decomposed into two matrices using QR factorization. QR factorization is applied also for the LLL sub-band of the secret video. The R matrix of the cover video is then calculated using the modified singular matrix. The cover sub-band is also re-calculated using the modified R matrix. Inverse 3D SWT is then applied. This results in the stego-video.

The performance of the algorithm was measured using the Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) for the cover and secret videos. The algorithm successfully hid a secret image in a cover video and also was able to successfully hid a video of the same size as the

cover video; the hiding capacity is 100%. Different parameters were tested (the resolution level, the alpha value, the used sub-band and the used mother wavelet) to detect the best values that derive the best performance in terms of PSNR and SSIM. The algorithm achieved a high SSIM value that reached 0.97 for video hiding and 0.99 for image hiding. And also achieved a high PSNR value that reached 68.8 for video hiding and 74 for image hiding, proving that the proposed algorithm's imperceptibility is very high. The comparative analysis shows that the proposed algorithm achieved higher imperceptibility than the other state-of-the-art algorithms regarding the average PSNR. The enhanced version of the proposed method is more robust against different types of attacks.

Table of Contents

Chapter 1.	Introduction	4	
1.1	Thesis Motivations	4	
1.2	Thesis Objectives	5	
1.3	Thesis Achievements	5	
1.4	Thesis Organization	6	
Chapter 2.	Related Work	8	
2.1	General Overview	8	
2.2	Related Studies	9	
2.3	Comparative Analysis 1	16	
Chapter 3.	Scientific Background	18	
3.1	Data security	18	
	Cryptography		18
	Watermarking		18
	Steganography		19
	Video steganography		20
3.2	Wavelet Transform2	22	
	Discrete Wavelet Transform		22
	Continuous Wavelet Transform		23
	Integer Wavelet Transform		23
	Redundant Discrete Wavelet Transform		23
3.3	Decomposition techniques	25	
	Singular Value Decomposition		25
	QR Factorization		26
	LU Factorization		27
3.4	Wavelet-based Fusion Technique	27	
3.5	Color spaces		
Chapter 4.	Proposed Method	30	
4.1	Hiding image using 1D SWT for secret image	30	
4.2	Hiding image using SVD	31	
4.3	Hiding image in YCbCr color space	33	
4.4	Comparison between QR and LU factorization techniques 3	34	
4.5	Hiding video3		
	Hiding Video without applying SWT for the secret video techn	niq	ue
			35
	Hiding video with applying SWT for the secret video techniqu	e	36
	Embedding Phase	••••	37
	Extraction Phase		38
Chapter 5.	Experimental Results	11	
5.1	Performance measure		
	Peak Signal to Noise Ratio (PSNR)	••••	41
	Structural Similarity Index Measure (SSIM)		41

	Normalized Cross Co-relation (NCC)	41
	Hiding capacity ratio	42
5.2	Results	42
	Hiding image using 1D SWT for secret image results	42
	Hiding image using SVD results	44
	Hiding image in YCbCr color space results	47
	Comparison between QR and LU factorization techniques	50
	Hiding video results	53
	Comparative analysis	56
	Enhanced method	57
Chapter 6.	Conclusions and Future Work	59
6.1	Conclusion	59
6.2	Future Work	61

List of Figures

Figure 2.1Transform domain techniques steps
Figure 3.1 Basic model for steganography system
Figure 3.2 Video steganography categories
Figure 3.3 3D SWT implementation
Figure 4.1 Block diagram for hiding image using motion detection 31
Figure 4.2 Block diagram for hiding image using multi-resolution SWT 32
Figure 4.3 Block diagram of the proposed method in YCbCr color space 34
Figure 4.4 Block diagram for matrix decomposition-based algorithm 35
Figure 4.5 The main steps for video steganography algorithm
Figure 5.1 (a), (c) the cover video frames before embedding the moon image,
(b), (d) the frames after embedding image
Figure 5.2 The first row shows the original secret images and the second row
shows the secret images after extracting from the video
Figure 5.3 The first row shows the original secret images and the second row
shows the secret images after extracting from the video
Figure 5.4 (a) The extracted image from the first resolution (b) the extracted
image from the second resolution (c) the extracted image from the third
resolution
Figure 5.5 (a) (c) (e) (g) The original secret images (b) (d) (f) (h) The extracted
images
Figure 5.6 (a) Original cover video frame (b) Stego-video frame
Figure 5.7 Performance using different image sizes
Figure 5.8 Comparison between original cover image and stego-image using QF
factorization (a) (c) the original cover images (b) (d) the stego-images 51
Figure 5.9 Comparison between original cover image and stego-image using QF
factorization (a) (c) the original cover images (b) (d) the stego-images 51
Figure 5.10 The extracted secret images from QR factorization

Figure 5.11 The extracted secret images from LU factorization	52
Figure 5.12 Sample of cover video frames before embedding and after	
embedding (a) Original cover video frame (b) Stego-video frame	53
Figure 5.13 Sample of secret video frames before embedding and after	
extraction left-hand side are the original frames, right-hand side are the	
extracted frames (a) Carphone (c) Foreman (e) Akiyo	54

List of Tables

Table 2.1 A brief survey on the related studies
Table 5.1 Performance of the technique using different video formats with gray
images
Table 5.2 Performance of the technique using different video formats with color
images
Table 5.3 The performance of the algorithm with different resolution levels46
Table 5.4 Performance of the algorithm with different images in the third
resolution
Table 5.5 Performance of the algorithm compared to other techniques 47
Table 5.6 . Performance of the algorithm using different images in YCbCr color
space images size 128×128
Table 5.7 NCC and SSIM for Lena image 128x128 in YCbCr and RGB color
spaces
Table 5.8 NCC and SSIM for different images 128x128 in YCbCr color space
49
Table 5.9 The algorithm performance using different image sizes 50
Table 5.10 Performance of the algorithm using QR factorization 52
Table 5.11 Performance of the algorithm using LU factorization 53
Table 5.12 Quality for stego and secret videos for different levels of resolution.
54
Table 5.13 The quality measures using different sub-bands of the cover video
55
Table 5.14 The quality measures using different wavelet mother functions 55
Table 5.15 The quality measures using different secret videos
Table 5.16 Performance of the algorithm compared to other techniques 56
Table 5.17The SSIM of extracted secret video under various types of attacks57

List of Abbreviations

Abbreviation Stands for

AVI Audio Video Interleave

CWT Continuous Wavelet Transform

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNA Deoxyribonucleic Acid

DWT Discrete Wavelet Transform

HSV Hue-Saturation-Value

IOT Internet **O**f Things

IWT Integer Wavelet Transform

LSB Least Significant Bit

LU Lower-Upper

LWT Lifting Wavelet Transform

MSB Most Significant Bit

MSE Mean Square Error

NCC Normalized Cross-Correlation

PSNR Peak Signal to Noise Ratio

PVD Pixel Value Differencing

QIM Quantization Index Modulation

RGB Red-Green-Blue

RIWT Redundant Integer Wavelet Transform

ROI Regions Of Interest

RSA Rivest–Shamir–Adleman

SVD Singular Value Decomposition

YCbCr Y luminance, Chroma: blue, Chroma: red

List of Publications

- 1) El-Shahed, Reham A., Al-Berry, M. N., Ebeid, Hala M. and Shedeed, Howida A., "Video Steganography using 3D Stationary Wavelet Transform", Proceedings of the 11th International Conference on Informatics & Systems (INFOS 2018)
- 2) El-Shahed, Reham A., Al-Berry, M. N., Ebeid, Hala M. and Shedeed, Howida A., "Multi-resolution video steganography technique based on Stationary wavelet transform (SWT) and Singular value decomposition (SVD)", Proceedings of the 4th international conference on innovative computing and communication (ICICC 2021), 20-21st FEBRUARY,2021, New Delhi, India, Published in Springer AISC series indexed in Scopus.
- 3) El-Shahed, Reham A., Al-Berry, M. N., Ebeid, Hala M. and Shedeed, Howida A., "Robust video steganography technique against attack based on Stationary Wavelet Transform (SWT) and Singular Value Decomposition (SVD)". Proceedings of the 3rd International Conference on Sustainable Computing (SUSCOM 2021), March 2021, Jaipur, Rajasthan, India, Published in Springer AISC series indexed in Scopus.
- 4) El-Shahed, Reham A., Al-Berry, M. N., Ebeid, Hala M. and Shedeed, Howida A., "High capacity video hiding based on multiresolution Stationary Wavelet Transform and hybrid-matrix decomposition techniques". Bulletin of Electrical Engineering and Informatics vol.10, no.3, June 2021, Q3 journal, indexed in Scopus, SJR: 0.23 (Accepted)
- 5) El-Shahed, Reham A., Al-Berry, M. N., Ebeid, Hala M. and Shedeed, Howida A., "Image hiding using upper-lower decomposition technique". International Journal of Intelligent

- Computing and Information Sciences (IJICIS), Article 8, Volume 21, Issue 1, February 2021, Page 95-103
- 6) El-Shahed, Reham A., Al-Berry, M. N., Ebeid, Hala M. and Shedeed, Howida A., "Image hiding using QR factorization and discrete wavelet decomposition techniques". Future computing and informatics journal, Volume 6, Issue 2, 2021