

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Pharmacological Study Of The Therapeutic Outcomes Of Rosuvastatin And Beta-Blocker Combination In IsoprenalineInduced Myocardial Infarction In Rats

Thesis Presented by Sarah Ahmed Abdallah Mohamed Baraka

M.Sc., Ain Shams University (2017)

Assistant Lecturer in Pharmacology and Toxicology Department

Faculty of Pharmacy, Ahram Canadian University (ACU)

Submitted for the partial fulfillment of the degree of Doctor of Philosophy in Pharmaceutical Sciences

(Pharmacology and Toxicology)

Under the supervision of

Dr. Ebtehal EL-Demerdash Zaki

Professor and Head of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Dr. Azza Sayed Mohamed Awad

Professor of Pharmacology and Toxicology Faculty of Pharmacy, Al-Azhar University (Girls)

Dr. Reem Nabil Abou El-Naga

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Dr. Mai Tolba

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Dr. Doaa Ahmed Mokhtar Elsherbiny

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy-Ain Shams University 2021

Acknowledgments

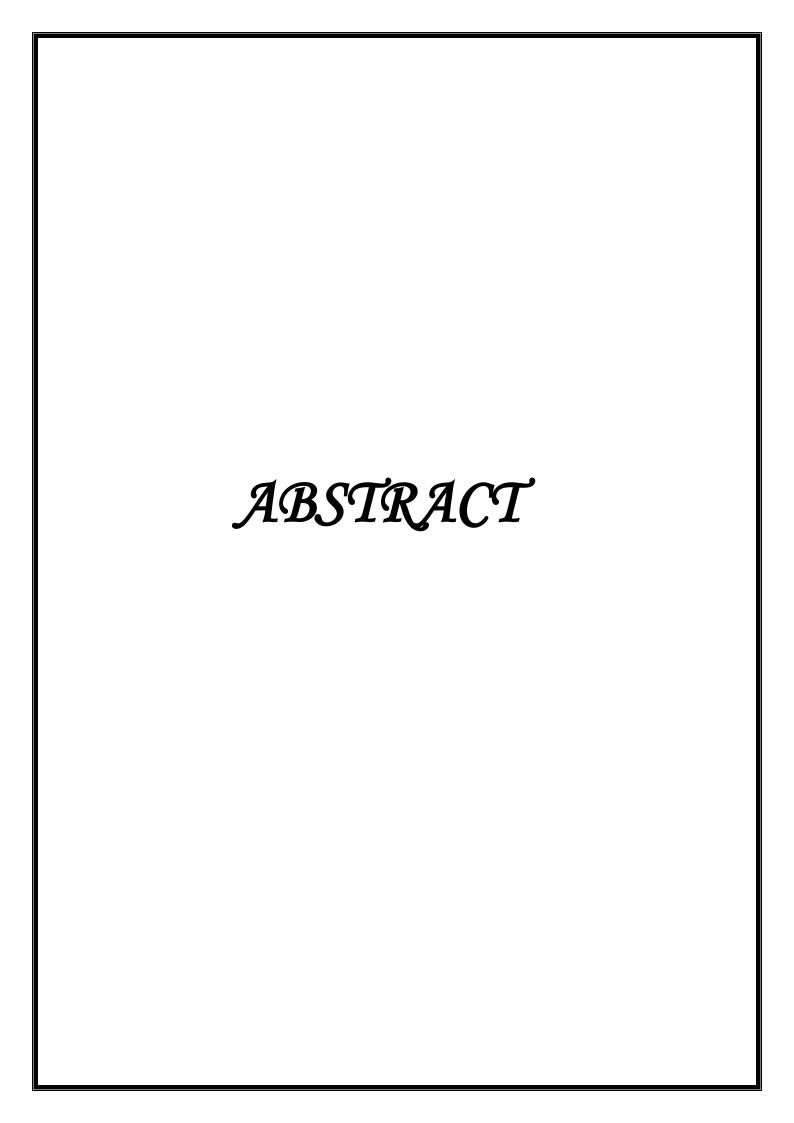
First of all, no words can express my profound thanks to Allah, the Ever-Magnificent; the Ever-Thankful, for his help and blessing. I am sure that this work would have never been accomplished without his help, and may this work add to our good deeds to gain his kind mercifulness.

Actually, I owe a heavy debt of gratitude to my supervisor **Prof. Dr. Ebtehal El-Demerdash**, Professor of Pharmacology & Toxicology and Head of the Department, Faculty of Pharmacy, Ain Shams University, for her keen supervision, her valuable guidance, and encouragement throughout the whole study. Her broad knowledge and her logical way of thinking have been of great value to me. I am profoundly grateful for her support and wealth of experience. As my teacher and mentor, she has taught me more than I could never give her credit for here. She has encouraged and challenged me throughout searching and writing this thesis and never accepting anything other than my best.

I also wish to express my profound thanks and appreciation to my supervisor **Prof. Dr. Azza Awad**, Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), for her kind supervision and guidance throughout this work. She is actually a great example of an outstanding university professor at both the ethical and scientific levels. I thank her for accepting me as a candidate under her supervision, choosing the point of this thesis, endless co-operation, fruitful and indispensable advice, valuable guidance, and providing me with a good environment and facilities to complete all the practical work throughout the whole study. I also do appreciate her effort in carrying out the statistical analysis, and revising this thesis.

Indeed, I am greatly thankful to my supervisor, Ass. Prof. Reem Abou El-Naga, Associate Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, for her kind supervision, endless support, as well as valuable instructions and guidance throughout this work. I do appreciate her effort and the valuable time she sacrificed to me while revising this thesis and while revising the manuscript. I thank her for all her help throughout all stages of this work.

I wish to express my warm and sincere thanks to **Ass. Prof. Mai Tolba**, Associate Professor of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, for her enthusiastic help and guidance leading to the completion of this thesis. I would


like to thank her for her experience in the process of researching, also for the time she spared while revising this thesis and while revising the manuscript. A very special thanks is paid to her for her effort in the presentation of this work as well as her interest and concern about my progress.

Great thanks are devoted to Ass. Prof. Doaa Mokhtar Elsherbini, Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her guidance and continuous help in work. I thank her for her helpful comments and discussion during writing this thesis.

I would like to express my deep thanks to **Prof. Dr. Wesam M. El-Bakly**, professor of Pharmacology & Therapeutics, Faculty of Medicine, Ain Shams University, for her help in carrying out the image analysis of the myocardial infarction size, which was very helpful in representing accurate results.

Finally, yet importantly, I would like to express my wholehearted thanks to my beloved family and my dearest husband; **Dr. Hossam**, for the generous support they provided me throughout my entire life and particularly through the process of pursuing the Ph.D. degree. Because of their unconditional love and prayers, I have the chance to complete this thesis. During this work, I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work.

Sarah Ahmed Baraka

Introduction: Myocardial infarction (MI) is a major form of ischemic heart disease characterized by an inequity of coronary blood supply and demand, leading to cardiac ischemia and cardiomyocytes degeneration. Rosuvastatin has been shown to activate PI3K/Akt/Nrf2/HO-1 pathway, which plays a pivotal role in promoting cell survival in the myocardium. **Method:** The present study investigated the therapeutic benefit of adding rosuvastatin (RSV 20 mg/kg; orally) to low-dose carvedilol (CAR 2 mg/kg; orally) in protection against myocardial infarction (MI) induced by Isoprenaline (ISP) in rats. **Results:** The results showed that low-dose CAR and/or RSV pre-treatment prevented ECG changes and histopathological alterations induced by ISP. Also, the same treatments significantly reduced the infarct size, heart index, serum creatine kinase-MB (CK-MB), cardiac troponin-I (cTn-I), and C-reactive protein (CRP) levels. In addition, pre-treatment with low-dose CAR and/or RSV replenished the antioxidant defense systems, superoxide dismutase (SOD) and total antioxidant capacity (TAC) with subsequent reduction in heart tissue lipid peroxides. Further, pre-treatment with RSV and/or CAR showed lower expression level of the inflammatory transcription factor NF-κB (p65) and a significant increase in phosphorylated PI3K and Akt, which may in turn activate the anti-apoptotic signaling events as evidenced by the decrease in active caspase-3 level. The combination therapy has more significant and potent effect in the most studied parameters as compared to their monotherapy. The protective effect of the proposed combination may be, at least partly, via activation of Nrf2/HO-1 signaling and the involvement of the PI3K/Akt prosurvival signaling pathway. Conclusion: This study highlights the potential benefits of combining RSV with low-dose CAR in affording myocardial protection against ISP-induced MI in rats; via attenuating oxidative stress, inflammation and apoptosis. Furthermore, the activation of Nrf2, by RSV in combination with low-dose CAR, suggests that targeting Nrf2 activation may represent a novel therapeutic approach in the treatment of myocardial infarction. These findings provide experimental evidence for extending the use of this combination to the clinical practice.

Keywords: Rosuvastatin; carvedilol; isoprenaline; myocardial infarction; PI3K/Akt/Nrf2/HO-1.

List of Contents

Subject	Page
List of abbreviations	III
List of tables	IX
List of figures	X
Introduction	1
1. Acute Myocardial Infarction	1
2.Isoprenaline Hydrochloride	29
3.Rosuvastatin	33
4.Carvedilol	40
Aim of the work	47
Materials and methods	49
1.The experimental Design	49
2. Materials	51
3. Methods	60
3.1. Electrocardiography (ECG)	60
3.2. Body weight & Heart index	61
3.3. Assessment of serum Creatine Kinase MB (CK-MB)	61
3.4. Assessment of serum cardiac troponin-I (cTn-I)	63
3.5. Assay of the myocardial infarct area	65

List of Contents

Subject	Page
3.6. Histopathological examination	67
3.7. Assessment of Lipid peroxides	68
3.8. Assessment of total antioxidant capacity (TAC)	69
3.9. Assessment of Superoxide Dismutase (SOD) Activity	70
3.10. Assessment of Total proteins	72
3.11. Immunohistochemical detection of NF-κB (p65)	74
3.12. Assessment of C-reactive protein (CRP)	76
3.13. Assessment of the active Caspase-3 levels (A-CASP3)	79
3.14.Western blot analysis of PI3K/Akt and Nrf-2/HO-1	81
3.15. Statistical Analysis	87
Results	88
Discussion	126
Summary and conclusion	132
References	134
Arabic summary	Y_1

ACS	Acute coronary syndrome
AD	Alzheimer's disease
AF	Atrial fibrillation
AIF	Apoptotic inducing factor
Akt	Protein kinase B
AMI	Acute myocardial infarction
ANOVA	Analysis of variance
AP-1	Activator protein-1
Apaf-1	Apoptotic protease activating factor-1
ARE	Antioxidant responsive element
AT-II	Angiotensin II
ATP	Adenosine triphosphate
BCRP	Breast cancer resistance protein
BSA	bovine serum albumin
Ca ⁺²	Calcium
CAD	coronary artery disease
CAR	Carvedilol
Caspases	Cysteinyl aspartate–specific proteases
CAT	Catalase
CHD	Coronary heart diseases
CHF	Congestive heart failure
CK-MB	Creatine kinase Myocardial Band

Cl	Chloride
СО	Carbon monoxide
COMT	Catechol-O-methyltransferase
CRP	C-reactive protein
cTn-I	Cardiac troponin I
cTn-T	Cardiac troponin T
CVDs	Cardiovascular diseases
CX3CR1	CX3 chemokine receptor 1
DISC	Death-inducing complex
DNA	Deoxyribonucleic acid
DTI	Direct thrombin inhibitors
ECG	Electrocardiography
EndoG	Endonuclease G
eNOS	endothelial nitric oxide synthase
g	Gram
G6PDH	glucose-6-phosphate dehydrogenase
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	Glutathione
GSSG	Glutathione disulfide
GST	Glutathione-S-transferase
H&E	Hematoxylin and eosin
HF	Heart failure

НК	Hexokinase
HMG-CoA	Hydroxymethylglutaryl-coenzyme A
HO-1	Heme oxygenase-1
H2O2	Hydrogen peroxide
HR	Heart Rate
HRP	Horseradish peroxidase
IFN	Interferone
IGF-1	insulin-like growth factor-1
IHD	Ischemic heart disease
IKK	Inhibitory protein Kappa B kinase
IL	Interleukin
iNOS	Inducible nitric oxide synthase
INR	international normalized ratio
I/R	Ischemia/reperfusion
ISP	Isoprenaline
ІкВ	Inhibitory protein Kappa B
Keap1	Kelch-like ECH-associated protein 1
LAD	Left anterior descending coronary artery
LDH	Lactate dehydrogenase
LMWH	Low molecular weight heparin
LOX-1	Lectin like ox- LDL receptor
LPA	Lipoprotein-A
LV	Left ventricle

MDA	Malondialdehyde
MI	Myocardial infarction
miRNA	Micro ribonucleic acid
mPTP	Mitochondrial permeability transition pore
NADH	Nicotinamide adenine dinucleotide (reduced form)
NADPH	Nicotinamide adenine dinucleotide phosphate
NBT	Nitroblue tetrazolium
NF-ĸB	Nuclear factor kappa-B
NIK	Nuclear factor kappa-B -inducing kinase
NO	Nitric Oxide
Nrf2	Nuclear factor erythroid 2p45 (NF-E2)-related factor 2
NSTEMI	Non-ST-Elevation myocardial infarction
NQO1	NAD(P)H quinone oxidoreductase 1
OATP-1B1	organic anion transporting polypeptide-1B1
OD	Optical density
ox-LDL	Oxidized low-density lipoprotein
PDK1	phosphoinositide-dependent kinase-1
P-gp-1	P-glycoprotein-1
P-gp	P-glycoprotein
PH	pleckstrin homology
PI3K	phosphatidylinositol 3-kinase
PIP2	phosphatidylinositol 4,5-diphosphate
PIP3	phosphatidylinositol 3,4,5-trisphosphate

PT	prothrombin time
PTEN	Phosphatase and Tensin Homolog
PVDF	Polyvinylidene Difluoride
RIPA	Radio-immunoprecipitation assay
RNS	Reactive nitrogen species
ROIs	Reactive oxygen intermediates
ROS	Reactive oxygen species
RyR	Ryanodine receptor channel
RSV	Rosuvastatin
SEM	Standard error of mean
S.C.	Subcutaneous
SDS-PAGE	Sodium Dodecyl Sulfate PolyAcrylamide Gel ELectrophoresis
SERCA	Sarco / endoplasmic reticulum Ca ²⁺ ATPase
SGOT	serum glutamic-oxaloacetic transaminase
SOD	Superoxide dismutase
STEMI	ST-Elevation myocardial infarction
TAC	Total antioxidant capacity
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive substances
TBST	Tris-Buffered Saline with Tween 20
TCA	Trichloroacetic acid
TEMED	Tetra methyl ethylene diamine