

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Genotype-Based Estimation of tetrahydrobiopterin among Egyptian children patients with atypicalphenylketonuria.

A Thesis Submitted by

Ahmed Fouad Mohamed Mahmoud

(B.Sc.in Biochemistry and chemistry, 2012)

As a partial Fulfillment for the requirement for the Master Degree of Science in Biochemistry.

Under supervision of

Prof.Dr.MagdyM.Mohamed

Professor of biochemistry Faculty of Science Ain shams university Prof.Dr.Osama Kamal Zaki

Consultant & professor of Medical genetics
Pediatrics Hospital
Ain Shams University

Biochemistry Department
Faculty of Science
Ain shams university
202

Contents

Abstract	(I)
List of Figures	(III)
List tables	(V)
List of abbreviations	, ,
Introduction	· · · · · · · · · · · · · · · · · · ·
Aim of Study	(3)
Chapter (I): review of Literature:	(4)
1) Metabolism	
2) Inborn genetic disorders	` ,
3) Classification of Inborn Errors of Metabolism	
4) Disorder of amino acid metabolism	
4.1-Maple syrup urine disease (MSUD)	
4.2- Homocystinuria	(14)
4.3- Non-ketoticHyperglycinemia (NKH)	(15)
4.4-Tyrosenemia	(17)
4.5- Alkaptonuria	(20)
4.6- Albunisim	(20)
4.7-Phenylketonuria PKU.)	(21)
5) Metabolism of phenylalanine and causes of PKU	(22)
5.1- Biochemistry of PKU	(22)
5.2- Symptoms of PKU	(23)
5.3- Prevalence of PAH mutations and incidence of PKU	(25)
5.4- Metabolic disorders of PKU	(26)
5.5- Classification of PKU	(27)
6) Role of PAH enzyme in Classical PKU	(27)
6.1- PAH enzyme regulation	(27)

	6.2- PAH enzyme structure(27)
	6.3-PAH Deficiency(28)
	6.4- PAH Mutations(29)
7)	Atypical Phenylketonuria (malignantPKU)(30) 7.1- Cellular functions of BH4(31)
	7.2- Biosynthesis of BH4(32)
	7.3- BH4 Deficiency(33)
	7.4- Role of tetrahydrobiopterin(BH4) as a cofactor of many enzymes)(34)
	7.5- Loading test with BH4(35)
	7.6- 6-Pyruvoyltetrahydropterin synthase enzyme(PTPS)(PTS)(40)
	7.6.1- PTPS enzyme structure
	7.6.2- Regulation of PTPS enzyme expression and activity
	7.6.3 - PTPS - gene Structure
	7.6.4- PTPS – gene mutations
8)	Diagnostic Tests
	8.2- Extended Metabolic Screening by Tandem Mass Spectrometry (TMS) in Clinical Diagnosis of
	IEM)(47)
	8.2.1. Acylcarnitine analysis in dried blood spots by TMS (LC/MS/MS)
	8.3- Genetic testing by sequence(61)
9)	Treatment
	9.2- Treatment with a BH4(63)
	9.3- Treatment with Enzyme(63)
	9.4- Cell directed Treatment(64)

Ch	apte	r (II)	: Subjects& Methods :(6	55)
	1-	Subje	cts(6	36)
	2-	Plan	of the work(66)
	3-		y-made reagent and kits(
	4-	Prime	ers	67)
			nicals, reagents and buffers	
	ָ	5.1-	Chemicals(6	7)
	4	5.2-	Reagents and buffers(6	68)
	6-	Bioch	nemical and molecular methods(
	6	5.1-	Metabolic Screen test be Tandem mass(6	i9)
	6	5.2-	Kuvan (BH4 analogous; Sapropeletrinehydeochloride)(7	1)
	6	5.3-	Extraction of total RNA from whole blood samples(72)
	6	5.4-	Synthesis of cDNA from mRNA Template (Reverse Transcription)(74)
	e	5.5-	Amplification of PTPS gene from cDNA by conventional polymerase characteristic (PCR)	
	6	5.6-	Agarose Gel Electrophoresis(
	ϵ	5.7-	Sequencing of the PCR product(8	30)
		6. 8-	Bioinformatics analysis of data(8	30)
	6	5.9- St	tatistical analysis(84)
Cha	apte	r (iii)	: Results :(87)
1-	• (Clinica	al presentation and phenotype relationship in PKU patients	
2-	Bioc	hemic	al analysis of atypical PKU patients(92)
3-	Mole	ecular	study(95)
	3	3.1- A	garose gel electrophoresis patterns of PCR product of PTS DNA(95)
	3	3.2- Se	equence analysis of PTS coding region(95)
	3	3.3- A	nalysis and alignment of the sequencing chromatogram(97)
	3	3.4-Se	quence analysis and alignment(97)
	apte cuss		:Discussion :(1	.03)

Chapter (V):Summary :	(111)
Summary	
References:	(114)
Annexation :-	
Arabic Summery	(132)
Arabic Abstract	(134)

Phenylketonuria(PKU) is an autosomal recessive inherited inborn error of metabolism that results from the impairment of phenylalanine hydroxylases(PAH)action due to either a mutation in PAH- gene which lead to nonfunctional enzyme or a defect in the Enzyme co-factor tetrahydrobiopterin(BH4) biosynthesis (Atypical PKU) (Malignant PKU), the main cause of BH4 biosynthesis defect is the 6-pyrovoil tetrahydrobiopterin syntheses (PTPS-gene) mutations. To determine the mutation spectrum in coding region of PTPSgene of atypical PKU Egyptian patients, complete RNA was extracted and purified and PTPS cDNA was synthesized and purified for double stranded sequencing in both direction. A total of 6 mutations were detected in PTPS-gene, four of them were Novel Mutations, one deletion mutation(c.164 186del (p.Val55Aspfs*2)cause deletion of all of exon 3, Two missens mutations caused benign mutation c.86A>T(p.Lys29Ile) andc.22C>T(p.Arg8Cys), one substitution mutation in exon-5 giving the same amino acid c.273G>A(p.91Lys=). The only two mutations were previously reported, a substitution mutation cause pathogenic mutation in exon-4 c.200C>T(p.Thr67Met) and a synonymous mutation c.405T>C(p.135Thr=) in exon-6. Identification of these mutations in atypical PKU Egyptian patients will facilitate differential confirmatory diagnosis, which is important for appropriate treatments. It will also aid carrier detection, genetic counseling, and subsequent prenatal diagnosis among Egyptian families who have history of disease.

List of figures

Figure No.	Figure title	Page
		no.
(Fig.1-1)	Overview of anabolic pathways	4
(Fig.1-2)	Overview of catabolic pathways	5
(Fig. 1-3)	Types of Tyrosinimia	18
(Fig.1-4)	Diagram depicting metabolism pathways of Phenylalanine	21
(Fig.1-5)	The phenylalanine hydroxylation system including the synthesis and regeneration of pterins and other pterin	23
(Fig.1-6)	External features on face of PKU patient	25
(Fig. 1-7)	Phenylalanine metabolic pathways. A schematic representation of the normal Phe metabolic pathway is shown in (a). (b) The alternative pathway of Phe metabolism	28
(Fig.1-8)	Biosynthesis and regeneration of tetrahydrobiopterin including possible metabolic defects in hyperphenylalaninemia and catabolism of phenylalanine	32
(Fig. 1-9)	Proposed algorithms for the BH4 (sapropterindihydrochloride; Kuvan) challenge, screening, and initiating treatment in BH4	37
(Fig.1-10)	Diagnostic flowchart for the laboratory diagnosis of PKU and BH4 deficiencies.	39
(Fig.1-11)	show location of PTs – gene on Ch. 11	42
(Fig.1-12)	Structure of carnitine and butylatedacylcarnitine.	48
(Fig.1-13)	Carnitine transport and mitochondrial carnitine—acylcarnitine cycle.	49
(Fig.1-14)	Common acylcarnitine patterns associated with various disease states	52
(Fig 1-15)	Profiles of acylcarnitines as their butyl esters in plasma of a normal control and patients with various acylcarnitine abnormalities	57
(Fig 2-1)	Worksheet of the collected samples	66
(Fig. 2-2)	Schematic representation of the flow of ions in a tandem mass spectrometer.	70
(Fig. 2-3)	Schematic representation of electrospray ionization into the MS/MS.	70
(Fig .3-1)	Patient gender frequancy	88
(Fig. 3-2)	Show Patients distribution over Egyptian cities with their ages (with month)on Y axis	88
(Fig.3-3)	patients degree of HPA severity	89
(Fig.3-4)	Line chart of Phe/tyr ration before and after Kuvan loaded test among studied patients	94

(Fig. 3-5)	1.5% Agarose gel electrophoresis of PCR PTPS gene product.	95
(Fig.3-6)	Amino acid sequence of wild type PTS enzyme of GenBank	97
(Fig. 3-7)	Chromatogram of novel deletion mutation and the wild type sequence	98
(Fig.3-8)	Amino acid sequence of c.164_186; p.(Val55Aspfs*2) deletion mutation of PTS enzyme	98
(Fig.3-9)	Pathogenicity of deletion of 23 base pair at position c.164_186; p.(Val55Aspfs*2)	99
(Fig.3-10)	Chromatogram of mutation of 200C>T and the with wild type	99
(Fig.3-11)	Amino acid sequence of c.200C>T; p.(Trp67Met) mutation of PTS enzyme	100
(Fig .3-12)	Chromatogram of novel mutations c.86A>T.	100
(Fig .3-13)	Amino acid sequence of c. 86A>T; p.Lys29Ile mutation of PTS enzyme	101
(Fig.3-14)	Chromatogram of mutations represent the transition mutations where panel A shows 22C>T mutation (p.Arg8Cys), Panel B shows 273G>A and Panel C shows 405T>C.	101
(Fig.3-15)	Amino acid sequence of c. 22C>T; p.Arg8Cys mutation of PTS enzyme	102
(Fig.3-16)	Data of polyphen2 showed a cold pathogenicity of 22C>T mutation	102
(Fig.4-1)	Illustrative of Kuvan loading test outcomes of phenylalanine concentrations at baseline of 5 – patients	105
(Fig.4-2)	Active sites of PTPS enzyme produced by I-TASSER software	109
(Fig.4-3)	I-TASSER results of PTPS wild type protein with legend and active sites	110

List of Tables

Table No.	Table title	Page no.
(1-1)	Inborn errors of metabolism in which symptoms of disease are the result of substrate accumulation	7
(1-2)	Inborn errors of metabolism in which symptoms of disease are the result of product deficiency	7
(1-3)	Classification types of IEMs	9
(1-4)	Incidence of PKU among some countries	26
(1-5)	Classification of PKU cases depending on blood Phe concentration	29
(1-6)	Clinically relevant acylcarnitine species included in a typical acylcarnitine analysis and their relevance when abnormally elevated	50-51
(1-7)	Acylcarnitine analysis Indications	53
(1-8)	Artefacts and nonspecific abnormalities in plasma and blood acylcarnitine profiles	54
(1-9)	Disorders associated with abnormal amino acid levels	55
(2-1)	Sequence of designed primers used for PCR.	67
(2-2)	Preparation of washing buffers and lysis buffer for RNA extraction.	72
(2 -3)	Components of Whole Blood RNA Purification Mini Kit.	72
(2-4)	Genomic DNA elimination reaction components for cDNAsynthesis .	75
(2-5)	Reverse-transcription reaction components	76
(2-6)	Contents of PCR reaction mixture	78
(3-1)	Demographic data of 13 patients	87
(3-2)	Demographic characteristics of PKU patients	89
(3-3)	Clinical features of all 13 patients	91
(3-4)	Levels of Phe and phe/tyrosin ratio among studied patient during loading test.	93
(3-5)	Biochemical characteristics and PTS mutations among atypical patients with PKU	96
(3-6)	The pathogenicity of identified mutations with two different predictor	102

List of abbreviations

IEMs	Inborn errors of metabolism
3-MCC	3-methylcrotonyl-CoA carboxylase deficiency
3MG	3-methylglutaconyl-CoA hydratase deficiency
5HIAA	5-hydroxyindoleacetic acid
AADC	aromatic amino acid decarboxylase
AMT	amino-methyl-transferase
AR	aldose reductase
BCAAs	branched-chain amino acids
BCKDC	branched-chain alpha-keto acid dehydrogenase complex
BH2	dihydrobiopterin
BH4	tetrahydrobiopterin
BIO	biotinidase or holocarboxylase synthetase deficiency
BKT	β-ketothiolase deficiency
BSA	bovine serum albumin
CACT	Carnitine acylcarnitine translocase
cAMP	Cyclic adinosine Monophosphate
Carnitine	3-hydroxy-4-(N,N,N-trimethylammonio)butanoate
CDG	congenital disorders of glycosylation
cGMP	Cyclic guanosine Monophosphate
CID	collision-induced dissociation
CPT I	carnitine palmitoyltransferase I
CPT II	carnitine palmitoyltransferase II
CPT II/CACT	carnitine palmitoyltransferase II/carnitine-acylcarnitine translocase
	deficiency
CPT1A	carnitine palmitoyltransferase I deficiency,
CR	carbonyl reductase
CT	computed tomography
CUD	carnitine uptake deficiency,
DBS	Dried Blood spots
DHFR	dihydrofolatereductase
DLD	dihydrolipoamide dehydrogenase
EE	ethylmalonic encephalopathy
eNOS	endothelial nitric oxide synthase
FAH	fumaryl-acetoacetate hydrolase
FAO	Fatty acid Oxidation

GA1	glutaric aciduria type 1
GC/MS	gas chromatography/mass spectrometry
GCS	glycine cleavage system
GCSH	glycine cleavage system hydrogen carrier
GLDC	Glycine decarboxylase
GTP	guanosine triphosphate
GTPCH	guanosine triphosphate cyclohydrolase
HADH	3-hydroxyacyl-CoA dehydrogenase
HGD	homogentisate dioxygenase
ННС	Hereditary hemochromatosis
HIBCH	3-hydroxyisobutyryl-CoA hydrolase deficiency
HMG	3-hydroxy-3-methylglutaryl-CoA lyase deficiency
HPLC	High performance liquid chromatography
HPPD	4-hydroxy-phenylpyruvate dioxygenase
HT-1	hepatorenal tyrosinemia type 1
HVA	homovanillic acid
IBD	isobutyryl-CoA dehydrogenase deficiency
iNOS	Inducible nitric oxide synthase
IVA	isovaleryl-CoA dehydrogenase deficiency
Kuvan®	sapropterin dihydrochloride
	(a synthetic formulation of the 6R-isomer of BH4)
LCHAD	long-chain 3- hydroxyacyl-CoA dehydrogenase
LCHAD/TFP	longchain L-3-hydroxyacyl-CoA dehydrogenase/trifunctional protein deficiency
MAD	multiple acyl-CoA dehydrogenase deficiency
MAMAD	Malonic aciduria malonyl-CoA decarboxylase deficiency
MCAD	medium-chain acyl-CoA dehydrogenase deficiency
MCT	supplementation with medium-chain triglycerides
MHBD	2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency
MMA	methylmalonic acidemia,
MSUD	Maple syrup urine disease
NADK2	dienoyl-CoA reductase deficiency caused by mitochondrial NAD
	kinase 2 deficiency
NBS	Newborn screening
NKH	Non-ketotic hyperglycinaemia
nNOS	neural nitric oxide synthase

NO	nitric oxide
NOS	nitric oxide synthase
nsSNPs	Non synonymous single nucleotide polymorphisms
NTBC	2-(2-nitro-4-trifluoro-methylbenzyol) 1,3 cyclohexanedione
Nitisinone	
Orfadin®.	
P	phosphate
PA	propionic acidemia,
PAH	phenylalanine hydroxylase
PAL	phenylalanine ammonia-lyase
PCD	pterin-4a-carbinolamine dehydratase
Phe	phenylalanine
PKU	Phenylketonuria
PTPS	6- pyruvoyl-tetra hydrobiopterin synthase
SBCAD	short/branched-chain acyl-CoA dehydrogenase deficiency
SCAD	short-chain acyl-CoA dehydrogenase
SR	sepiapterinreductase
SUCLA	succinyl-CoA ligase deficiency,
TAT	tyrosine aminotransferase
TFP	Trifunctional protein
TH	tyrosine hydroxylase
TMS	Tandem Mass Spectrometry
LC/MS/MS	
MS/MS	
TrpH	tryptophan hydroxylase
TTI	Tyrosinemia type I
Tyr	tyrosine
TyrH	tyrosine hydroxylase
VLCAD	very long-chainacyl-CoA dehydrogenase deficiency
δ-ALA	5-aminolevulinic acid
LNAAs	large neutral amino acids
IEMs	Inborn errors of metabolism