

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of the immunomodulatory effect of exopolysaccharides isolated from Lactic acid bacteria against hepatocarcinogenesis in rats

A Thesis Submitted to Faculty of Science, Ain Shams University In Fulfillment of Ph.D degree of Science in Biochemistry

 $\mathbf{B}\mathbf{y}$

Ola Mohamed Sayed Khedr M.Sc. in Biochemistry and Chemistry (2017)

Faculty of Science Ain Shams University

Evaluation of the immunomodulatory effect of exopolysaccharides isolated from Lactic acid bacteria against hepatocarcinogenesis in rats

Thesis Submitted to Faculty of Science, Ain Shams University In Fulfillment of Ph.D degree of Science in Biochemistry

By

Ola Mohamed Sayed Khedr

M.Sc. in Biochemistry and Chemistry (2017)
Faculty of Science
Ain Shams University

Under Supervision Of

Dr. Eman I. M. Kandil

Prof. of Biochemistry Faculty of Science Ain Shams University

Dr. Fatma S.M. Moawed

Ass. Prof. of Biochemistry National Center for Radiation Research and technology Atomic Energy Authority

Dr. Sawsan M. Elsonbaty

Prof. of Biochemistry
National Center for Radiation
Research and technology
Atomic Energy Authority

Dr. Basma E. Abdel-Maksoud

Lecturer of Biochemistry
Faculty of Science
Ain Shams University

Faculty of Science Ain Shams University 2021

بيتم التَّوَالْتَحْ إِلَّكُو الْتَحْمِي

وَمَا تَرْفِيتِي إِلَّا اللَّهِ عَلَيْهِ اللَّهِ عَلَيْهِ تَمُكُلِّتُ وَالنَّهُ النَّهُ النَّهُ عَلَيْهِ النَّهُ النّهُ النَّهُ النَّالُهُ النَّهُ النَّا اللَّهُ النَّهُ النَّهُ النَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ النّهُ النَّهُ اللَّهُ النَّهُ اللَّهُ اللَّا اللَّهُ اللّ

Approval Sheet

Evaluation of the immunomodulatory effect of exopolysaccharides isolated from Lactic acid bacteria against hepatocarcinogenesis in rats

By Ola Mohamed Sayed Khedr

Submitted to

Biochemistry department, Faculty of Science, Ain Shams University

Supervision Committee

Approved

Dr. Eman I. Kandil

Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Sawsan M. El-sonbaty

Prof. of Biochemistry Radiation Microbiology Department NCRRT-Atomic Energy Authority

Dr. Fatma S.M. Moawed

Ass. Prof. of Biochemistry Health Radiation Research Department NCRRT-Atomic Energy Authority

Dr. Basma E. Abdel-Maksoud

Lecturer of Biochemistry Biochemistry Department Faculty of Science Ain Shams University First, foremost, and all thanks to Allah by whose grace this work had been completed and by whose grace all my life is arranged in the best. Nobody can imagine this way that had been drawn by the mercifulness of Allah.

Declaration

I declare that this thesis has been composed by me and it has not been submitted for a degree at this or any other university.

Ola Mohamed Sayed Khedr

Dedication

I dedicate this work to all members of my dear family for their support and continuous backing in which this work was accomplished.

Ola Mohamed Sayed Khedr

I would like to express my profound regards to the following people who gave guidance, strength, and encouragement in making this work possible.

My deep gratefulness and special thanks to **Dr.Eman I. Kandil**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt, for her supervision and kind encouragement.

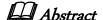
I would like to express my deep thanks and my grateful to **Dr.Sawsan M. El-sonbaty**, Professor of Biochemistry, Radiation Microbiology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt, for her valuable support and kind help.

I wish to express my deep thanks to **Dr. Fatma S.M. Moawed**, Assist. Professor of Biochemistry at Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt, for her continuous encouragement, advice and helping with her experience.

I also express my deep thanks to **Dr. Basma E. Abdel-Maksoud**, Lecturer of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt, for her support throughout this work and kind help.

Finally, Special thanks to all my colleagues at Ain Shams University and The National Center for Radiation Research and Technology (NCRRT), for their sincere support and assistance.

CONTENTS


Items	Page
Abstract	i
List of Abbreviations	ii
List of Figures	iv
List of Tables	vi
Introduction	1
Aim of the work	4
I. Review of Literature	5
I.1-Hepacellular carcinoma	5
I.1.1-Epidemiology	6
I.1.2-Risk factors for hepatocellular carcinoma	7
I.1.2.1-Cirrhosis	7
I.1.2.2- Hepatitis B virus (HBV) infection	7
I.1.2.3- Hepatitis C virus (HCV) infection	8
I.1.2.4 -Aflatoxins(AF)	8
I.1.2.5-The metabolic syndrome	8
I.1.2.6-Alcohol abuse	9
I.1.2.7-Iron overload	9
I.1.2.8-Tobacco smoking	9
I.1.2.9-Oral contraceptive steroids	9
I.1.2.10- Pesticides	9
I.1.3-Key signaling pathways in liver carcinogenesis	11
I.1.4-Pathophysiology of liver cancer	11
I.1.5- Hepatocarcinogenesis and diethylnitrosamine	12
I.1.6 - Immunomodulatory markers and HCC	13
I.1.6.1-Cytokines as signaling molecules	14
I.1.6.2- Signal transducer and activator of transcription	16
protein-3 and related signaling pathways	10
I.1.6.3-Mitogen-activated protein kinases	20
I.1.6.4-Toll like receptors family	20
I.1.7-Hepatocellular carcinoma therapy	21
I.2-Probiotics as an approach for preventing/ treating HCC	22
I.3.Exopolysaccharides	24
I.3.1.The physiological functions of EPSs	26
I.3.1.1.Prebiotic effects	26
I.3.1.2.Anticoagulant effects	26

Contents

I.3.1.3. Antioxidant effects	27
I.3.1.4.cholesterol lowering effects	27
I.3.2. Possible factors influencing the anti-cancer effect of EPSs	28
I.3.3. Immunomodulatory and anti- inflammation effect of EPSs	30
II. Materials and Methods	34
II.1.Materials	34
II.1.1.Chemicals	34
II.1.2.Bacteria	34
II.1.3. De Man Rogosa Sharpe agar	34
II.1.4.Experimental animals	34
II.2.Methods	35
II.2.1. Culturing of bacteria	35
II.2.2. Isolation of exopolysacchrides from <i>L.acidophilus</i>	35
II.2.3.Characterization of EPSs	36
II.2.4.Experimental Design	36
II.2.5. Blood and tissue sample preparation	37
II.2.5.1. Blood sampling	37
II.2.5.2. Tissue sampling	38
a)Biochemical analysis	38
b) Immunoblotting investigation and Molecular studies	38
c)Histopathological study	38
II.2.6.Biochemical parameters	39
II.2.6.1. Liver enzymes	39
II.2.6.1.1.Determination of serum alanine aminotransferase	39
Activity	39
II.2.6.1.2. Determination of total proteins level in the serum	42
II.2.6.1.3. Determination of Gamma-glutamyltrasferase	40
in the serum	43
II.2.6.2. Oxidant/Antioxidant status	44
II.2.6.2.1. Determination of Malondialdehyde level in the	4.4
liver tissue	44
II.2.6.2.2.Determination of reduced glutathione content in	46
the liver tissue	40
II.2.7. Immunological parameters	49
II.2.7.1.Determination of Interleukin-17 content in the liver	49
tissue	49
II.2.7.2.Determination of Interleukin-10 content in the liver	54
tissue	J 1
II.2.7.3.Determination of Transforming growth factor-beta1	60

Contents

in the liver tissue	
II.2.8. Mechanistic aspects	65
II.2.8.1. Signaling proteins expressions	65
II.2.6.8.2. Gene expression of toll like receptor	68
II.3.Histopathological examination	79
II.4.Statistical analyses	80
III-Results	81
III.1.Charaterization of EPSs	82
III.2.Biochemical results	83
III.2.1. Liver enzymes	83
III.2.2. Oxidant/Antioxidant status	87
III.2.3. Immunological parameters	90
III.2.4. Mechanistic aspects	94
III.2.4.1. Signaling proteins expressions	94
III.2.4.2. Gene expression of toll like receptor	96
III.3.Histopathological results	100
IV-Disscusion	106
Summary and Conclusion	120
V-Referances	124
Arabic Summary	
Arabic abstract	

ABSTRACT

Probiotics have been suggested as safe and cost-effective approach to prevent or treat HCC. Some of the exopolysaccharides (EPSs) produced by lactic acid bacteria confer health benefits such as immunemodulatory, antitumor, antibio film and antioxidant activities. present study was therefore aimed to investigate immunomodulatory effect of Lactobacillus acidophilus ATCC 4356 EPSs against diethyl nitrosamine (DEN) induced HCC in male rats' model. The bacterial exopolysaccharides were extracted, purified and identified. Extracted EPSs were characterized by using Fourier transforms infrared spectroscopy (FTIR) which showed different stretches of bonds at different peaks. Hepatocellular carcinoma was induced by daily oral administration DEN (20 mg/kg b.w.) for eight constitutive weeks. EPSs were orally administered daily (100 mg /kg b.w.) for eight constitutive weeks. The results revealed that, DEN induced a significant increase in serum ALT and y-GT activities as well as MDA, IL-17, TGF-β1, signal transducer and activator of transcription-3 protein (STAT3), mitogen activated kinase p38 (p38MAPK) levels in the liver tissue. The gene expression of liver toll like receptor 2 (TLR-2) gene was also increased. While, there was a significant decrease in reduced glutathione, IL-10 contents in the liver tissue and serum total proteins level compared to normal control. However, prevention and treatment with EPSs ameliorated the investigated parameters. The histopathological observations of liver tissues were in agreement with restored biochemical results, revealed that liver tissues with DEN treatment showed significant inflammatory cells infiltration in portal area, while the liver tissues which exposed to EPSs preventive and treatment groups showed significant improvement upon hepatocytes. conclusion, it can be concluded that Lactobacillus acidophilus ATCC 4356 EPSs are efficacious control against HCC throughout the modulation of key signaling growth factors associated inflammation via antioxidant mediated antiinflammatory immunemodulatory activities. Prevention effect of EPSs gave best reults than treatment effect of EPSs on HCC.