

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of ADC mapping in assessment of therapeutic response of hepatocellular carcinoma post trans-catheter arterial chemoembolization

Chesis

Submitted for partial fulfillment of master degree in diagnostic and interventional radiology

By

Mona Ahmed Saad Mohamed Abo Elenin

M.B.B.Ch, Cairo University

Under supervision of

Prof. Dr. Zenat Ahmed El Sabbagh

Assistant Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Dr. Mohamed Mamdouh Mohamed Abdel Aziz

Lecturer of Radiodiagnosis
Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain -shams University
2021

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the mainfactor in completing this work.

I would like to express my deepest gratitude and thanks to Prof.

Dr. Jenat Ahmed El Sabbagh, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, For giving me the honor of being her candidate, working under her supervision, guided by her experience and precious advices and true concern, I could not ask for a better mentor and role model.

Words could not express my appreciation, thanks and respect to Dr. Mohamed Mamdouh Mohamed Abdel Aziz, Tecturer of Radiology, Faculty of Medicine, Ain Shams University, for his kindness, patience, consideration, precious assistance throughout this work.

I would like to express my appreciation and thanks to my husband, without his endless support and encouragement. I would have never completed this work. To my beloved father I wish you were here with me to witness this moment, hope you are proud of me, last, but not least, Many thanks to the light of my life my mother, for indulging my studies and late night working.

LIST OF CONTENTS

age No.
I
II
. IV
V
VIII
1
3
4
4
11
19
30
36
47
54
59
66
75
80
83

List of Abbreviations

Abb.		Full Term
± SD		Standard deviation
AASLD	:	American Association for the Study of Liver Diseases
ADC	:	Apparent diffusion coefficient
AUC		Area under curve
BB-EPI	:	Black-blood echo planar
BCLC	:	Barcelona Clinic Liver Cancer
CA	:	contrast agents
CBD	:	common bile duct
CE	:	Contrast enhanced
CE-CT	:	contrast- enhanced CT
CT	:	Computed tomography
DCE MRI	:	Dynamic contrast-enhanced MRI
DCE -MRI	:	Dynamic contrast-enhanced MRI
DEB	:	Drug-eluting bead
DN	:	Dysplastic nodule
DWI	:	Diffusion weighted imaging
DWI	:	Diffusion-weighted imaging
Gd	:	gadolinium
Gd	:	gadolinium
Gd-EOB-DTPA	:	gadolinium ethoxybenzyl diethylene-triamine pentaacetic acid
GRE	:	Gradient-echo
HA	:	Hepatic artery
HCC	:	Hepatocellular carcinoma
HV	:	Hepatic vein
IQR		Inter-quartile range
IVC	:	inferior vena cava
IVIM	:	intravoxel incoherent motion
LN	:	lymph node
MR	:	Magnetic resonance
MR	:	magnetic resonance
MRI	:	Magnetic resonance imaging
NPV		Negative predictive value
PPV		Positive predictive value

List of Abbreviations

Abb.		Full Term
PV	:	Portal vein
RARE	:	Rapid acquisition with relaxation enhancement
RCT	:	Randomized controlled trial
RFA		Radiofrequency ablation
RN	:	Regenerative nodule
ROC		Receiver operating characteristic
SC	:	subcutaneous
SE		Standard Error
SGE	:	spoiled gradient-echo
SGE	:	spoiled gradient-echo
SI	:	Signal intensity
SPAIR	:	Spectrally adiabatic inversion recovery
SPIO	:	Super paramagnetic iron oxide
SSTSE	:	Single-shot turbo spin-echo
STIR	:	Short-tau inversion recovery
TACE	:	Trans catheter arterial chemoembolization
TNR		true negative rate
TPR		true positive rate
WI	:	Weighted images

List of Tables

Table No.	Title	Page
` '	ealth Organization Perforn	
Table (2): Child Tu	rcotte Pugh classification	49
. ,	's , tumor characteristics among 25 HCC patients:	
· /	ison between the 2 groups or characteristics and ADC	O
as regards dia	son between DCE-MRI and agnostic accuracy for les	ion activity
` /	agreement between DCE	
` '	on between patients charac	
` '	ve of DWI/ADC value to o	

List of Figures

Fig No. Title	Page
Fig (1): Segmental anatomy of the liver according to Couinaud	6
Fig (2): internal anatomy of liver with hepatic arterial anatomy highlighted	7
Fig (3): The PV and its tributaries (semi-diagrammatic).	9
Fig (4): Arrangement of the hepatic venous territories. Multiple lower gro	oup
veins may be present. Individual segments may drain into more than or	one
hepatic venous territory	10
Fig (5): Growth patterns of progressed hepatocellular carcinoma.	13
Fig (6): Drawing illustrates the concept of stepwise carcinogenesis of HCC	in
cirrhosis	
Fig (7): Left: Photograph of explanted liver from a 67-year-old woman w	rith
HCV-induced cirrhosis shows an outer surface studded with regenerat	ive
nodules of various sizes	16
Fig (8): Left: Photograph of a gross pathologic section of explanted liv	er,
shows a well- defined 12-mm nodule (arrows). Right: Photomicrogra	ıph
shows a well-defined transition between the liver parenchy	ma
(arrowheads) and nodule (arrows).	17
Fig (9): Importance of a multichannel array receiver coil.	20
Fig (10): Typical MR imaging examination of the liver	22
Fig (11): Diffuse hepatic steatosis and hepatic adenoma.	23
Fig (12): Liver MRI. (A) T1 weighted image shows an isointense mass (arro	w)
with multiple regenerative nodules (arrow head) in the surround	ing
parenchyma. (B) T2 weighted image with fat suppression shows the mage	ass
(arrow) as hypointense compared with the surrounding parenchyma	25
Fig (13): Normal HVs. Axial image T1 (a) and T2 (b) weighted plain image	ges
showing the normal orientation of the left (L), middle (M) and right (
HVs.	
Fig (14): PV anatomy: Post-Gd T1 images with normal PV orientation a	ınd
branching	29
Fig (15): Normal MR Liver signal intensity on T1 (right) and T2 (le	eft)
weighted non contrast axial images	
Fig (16): Schematic illustrates water molecule movement.	
Fig (17): Flow chart shows the generation process of an axial computed D	
image.	
Fig (18): Visual liver lesion characterization with DW-MRI.	35
Fig (19): Typical MR imaging features of HCC using hepatocyte speci	
contrast media.	
Fig (20): HCC isointense on T2WIs.	39
Fig (21): Hypovascular HCC with fat.	
Fig (22): (a) T2W images shows large heterogeneous tumor occupying nea	
the entire right lobe and extending into the PV, which is marked	
enlarged (arrow). (b)Gd-enhanced T1W three-dimensional SPGR ima	
	_

List of Figures €

	acquired in the arterial- dominant phase shows that tumor and PV	
	thrombus (arrow) enhance heterogeneously	
	23): Infiltrative HCC with vascular invasion.	
Fig (24): DWI in a 67-year old patient with histology proven HCC	44
· ·	25): Typical hepatocellular carcinoma.	
	26): Updated BCLC staging system and treatment strategy.	
Fig (27): Diagrammatic representation of technique of TACE.	51
	28): Comparison between the 2 groups as regards ADC value	61
Fig (29): Comparison between DCE-MRI and DWI/ADC as regards diagnostic	
	accuracy assessments.	62
Fig (30): An agreement between D-MRI and DWI/ADC	63
	31): Correlation between ADC value and AFP level.	64
Fig ((32): ROC curve of DCE-MRI vs DWI/ADC value demonstrating at a	
	cutoff point (≤1.33)DWI/ADC value detected patients with residual	
	active lesions, with good (84%) accuracy, sensitivity= 84% and	
	specificity= 83% in comparison to DCE-MRI	65
Fig ((33): A) and B) arterial and delayed phases of triphasic CT showing no	
	definite enhancement or washout. C) and D) arterial and delayed phases	
	of dynamic MRI showing no appreciable enhancement or washout as well	
	yet E) and F)DWI/ADC sequences showing restricted diffusion within the	
	lesion with G) showing low ADC average value about 1.26 suggestive of	
	tumoral activity. H) and I) angiographic images showing tumoral blush	
	after contrast injection which disappeared after injection of chemolipidol	· -
т.	mixture denoting adequate embolization	6/
Fig	(34): A) and B) shows arterial and delayed phases of dynamic MRI	
	respectively showing arterial enhancement and washout, C) DWI showing	
	high signal and D) ADC sequence showing low signal within the lesion	
	denoting restricted diffusion while E) is ADC mapping showing low	60
TC! - 4	value as expected of average about 1.03	08
Fig ((35): A) early arterial phase of dynamic MRI showing arterial contrast	
	enhancement, B) delayed phase showing contrast washout, C) DWI	
	showing high signal, D) ADC mapping showing low ADC value denoting	
	restricted diffusion, E) angiographic image during 2nd session of TACE showing tumoral blush denoting residual arterial supply and hence	
	tumoral activity and D) post chemo injection showing no tumoral blush	
		69
Fig ((36): A) arterial phase of dynamic MRI showing high signal within the	U)
rig (lesion, B) delayed phase showing washout. C) DWI showing low signal	
	within the lesion D) ADC sequence showing high signal proving no	
	restricted diffusion, E) ADC mapping showing high ADC value 1.97	70
Fig	(37): A) arterial phase of dynamic MRI showing no post contrast	, 0
115	enhancement, B) delayed phase with no washout, C) DWI showing high	
	signal but D) ADC image showing high signal as well denoting facilitated	
	diffusion. E) ADC mapping with high ADC value range about 2.18	71
Fig	(38):A) and B) shows arterial and delayed phases of dynamic MRI	, 1
5	respectively showing no arterial enhancement or washout, C) DWI	
	respectively showing no unternal chimalicentent of musicut, C) DW1	

List of Figures €

	showing high signal yet D) ADC sequence showing high signal as well within the logical denoting facilitated diffusion while E) ADC manning	
	within the lesion denoting facilitated diffusion while E) ADC mapping showing high value as expected of average about 1.97	. 72
Fig	(39): A) and B) shows arterial and delayed phases of dynamic MRI	
	respectively showingarterial enhancement and washout, C) DWI showing	
	high signal and D) ADC sequence showing low signal within the lesion	
	denoting restricted diffusion while E) ADC mapping showing low value	
	as expected of average about 1.2	. 73
Fig	(40): A) and B) arterial and delayed phases of dynamic MRI with no	
Ü	obvious contrast enhancment and washout yet C) and D) DWI and ADC	
	showing high and low signals respictevly denoting restricted diffusion. E)	
	ADC mapping showing low ADC value of 1. 2nd session of diagnostic	
	celiac angiography showed tumoral blush denoting viable tumor which	
	consequently chemoembolized	. 74
	1 2	

Abstract

Background: Trans-arterial chemoembolization (TACE) is widely used as an interventional procedure in treatment of hepatocellular carcinomas (HCCs). Apparent diffusion coefficient (ADC) value can be used in evaluating its efficacy in order to rule out or in residual tumor tissue.

Aim of the work: To assess the role of Diffusion weighted images (DWI) and ADC value in evaluating HCCs post TACE

Patients and methods: a retrospective analytical study on 25 patients with HCC; to assess therapeutic response of HCC cases after TACE by ADC mapping MRI technique in comparison to dynamic contrast enhanced study (DCE-MRI), to evaluate its accuracy, sensitivity and specificity in detecting treatment response and or residual tumor.

Results: Comparative study between the 2 groups revealed; highly significant increase in ADC value, in active group; compared to inactive group; with highly significant statistical difference (p < 0.01). Comparative study between DCE-MRI and DWI/ADC assessments revealed; non-significant difference in sensitivity, specificity, PPV and NPV in HCC patients; with non-significant difference (p > 0.05). Spearman's correlation analysis shows that; AFP level had a highly significant negative correlation with ADC value; with highly significant statistical difference (p < 0.01). By using ROC-curve analysis, DWI/ADC value at a cutoff point (\leq 1.33) detected patients with residual active lesions, with good accuracy(84%), sensitivity84% and specificity 83% (p = 0.0001).

Conclusion: Finally we conclude that, DCE-MRI is a powerful tool in detection of tumor viability and complications after TACE yet Imaging protocol should include DWI/ADC images with ADC mapping and value for better tissue characterization.

Introduction

HCC is now the third leading cause of cancer deaths worldwide, with over 500,000 people affected. (Llovet et al., 2018).

Hepatocellular carcinoma (HCC) occurs predominantly in patients with underlying chronic liver disease and cirrhosis (Machida 2018).

Liver Transplantation remains the best option for patients with HCC according to Milan criteria (single tumors ≤ 5 cm in diameter or no more than three tumors ≤ 3 cm in diameter). Unfortunately, there is a limited supply of good-quality deceased donor organs. Thus, alternative treatments, including resection, radiofrequency ablation (RFA), and, potentially, systemic therapy are needed (Imura et al., 2018), (Sugawara et al., 2018).

Patients who have advanced disease may benefit from palliative care interventions rather than be subjected to often ineffective therapies (Ferri et al., 2017). The most commonly offered therapy is TACE. TACE is performed by an interventional radiologist who selectively cannulates the feeding artery to the tumor and delivers high local doses of chemotherapy, including doxorubicin, cisplatin, or mitomycin C. To prevent systemic toxicity, the feeding artery is occluded with gel foam or coils to prevent flow(Liu et al., 2018).

Unenhanced computed tomography (CT) confirms successful introduction of the chemoembolization mixture into the targeted lesions. However, it can be difficult to evaluate contrast enhancement in a tumor with partial retention of iodized oil on contrast- enhanced CT (CE-