

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Efficacy of Radiofrequency Catheter Ablation versus Antiarrhythmic Drugs in Treating High Burden Premature Ventricular Contractions in Children with Structurally Normal Heart

Thesis

Submitted for Partial Fulfillment of Doctorate Degree in Cardiology

By

Salaheldin Hefny Salaheldin Alahwany

Master of Science in Cardiology, Ain Shams University

Under supervision of

Prof. Wagdy Abdelhamid Galal

Professor of Cardiology
Faculty of Medicine – Ain Shams University

Prof. Mazen Tawfik Ghanem

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Lamyaa Elsayed Allam

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Maha Mohamed Khalifa

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Wagdy Abdelhamid Galal**, Professor of Cardiology, Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Mazen Tawfik Ghanem**, Professor of Cardiology, Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Lamyaa Elsayed Allam,** Assistant Professor of Cardiology, Faculty of Medicine –
Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

I wish to introduce my thanks to **Dr. Maha Mohamed Khalifa**, Lecturer of Cardiology, Faculty of Medicine – Ain

Shams University, for her kindness, supervision and cooperation in this work.

Salaheldin Alahwany

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	
Aim of the Work	3
Review of Literature	
Pathophysiology of PVCs	4
Diagnostic Evaluation	12
Treatment Modalities	20
Patients and Methods	25
Results	34
Discussion	71
Summary	85
Conclusion	88
References	89
Arabic Summary	—

List of Abbreviations

Abb.	Full term
3D EAM	three-dimensional electro anatomical mapping
A1AR	Adenosine receptor A1
<i>AAD</i>	Antiarrhythmic drugs
<i>AC</i>	Adenylyl cyclase
Ant	Anterior
<i>ASC</i>	aortic sinus cusp
<i>CA</i>	Catheter ablation
CCB	calcium channel blocker
<i>CICR</i>	Calcium-induced calcium release
<i>CS</i>	Coronary sinus
<i>DAD</i>	Delayed afterdepolarization
<i>ECG</i>	Electrocardiogram
$G lpha i \dots G lpha i$	Inhibitory G-protein
Gas	Stimulatory G-protein
HB	His bundle
<i>ICD</i>	Implantable cardioverter-defibrillator
Iti	Transient inward current
<i>LAD</i>	Left anterior descending coronary artery
<i>LAO</i>	Left anterior oblique
<i>LAT</i>	local activation time
<i>LCC</i>	Left coronary cusp
<i>LCx</i>	Left circumflex coronary artery
<i>LMCA</i>	Left main coronary artery
	L-type sarcolemmal calcium channel
LV	Left ventricular
LVEDd	LV end-diastolic dimension
LVEF	Left ventricular ejection fraction
LVESd	LV end-systolic dimension

List of Abbreviations Cont...

Abb.	Full term
mAChR	. Muscarinic acetylcholine receptor
MRI	. Magnetic resonance imaging
<i>NCC</i>	. Non-coronary cusp
NCX	. Sodium–calcium exchanger
<i>PKA</i>	. cAMP-dependent protein kinase (protein kinase A)
<i>PLB</i>	. Phospholamban
Post	. Posterior
PVCs	. Premature ventricular complexes
<i>RAO</i>	. Right anterior oblique
RCA	. Right coronary artery
<i>RCC</i>	. Right coronary cusp
<i>RV</i>	. Right ventricular
<i>RVOT</i>	. Right ventricular outflow tract
RyR2	. Ryanodine receptor
SHD	. Structural heart disease
SR	. Sarcoplasmic reticulum
<i>TAPSI</i>	. Tricuspid annular plane systolic excursion
<i>VAs</i>	. Ventricular arrhythmias
VF	. Ventricular fibrillation
VT	. Ventricular tachycardia
βAR	. β -adrenergic receptor

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Age and gender among the studied groups	studied
Table (3):	Main symptom among the studied gro	ups38
Table (4):	Sinus cycle length and PVC burden the studied groups at the beginning study and at follow-up	g of the
Table (5):	PVC QRS duration, coupling interval a PVC interval among the studied group	-
Table (6):	PVC BBB-like morphology, localizate axis among the studied groups	
Table (7):	Echocardiography findings among the groups (1/6)	
Table (8):	Echocardiography findings among the groups (2/6)	
Table (9):	Echocardiography findings among the groups (3/6)	
Table (10):	Echocardiography findings among the groups (4/6)	
Table (11):	Echocardiography findings among the groups (5/6)	
Table (12):	Echocardiography findings among the groups (6/6)	
Table (13):	Baseline AADs medications amo studied groups	-
Table (14):	AADs medications cessation amostudied groups	_
Table (15):	AADs medications in cases that comedications among the studied groups	

List of Tables Cont...

Table No.	Title	Page No.
Table (16):	Side effects in cases that medications among the studied gro	
Table (17):	RFCA data among RFCA group	68
Table (18):	Treatment success among the stud	ied groups 69
Table (19):	Agreement between baseline local Site of ablation in RFCA group	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Management of PVCs, PVCs preventricular Complexes	
Figure (2):	Schematic overview of the mechanic premature ventricular complexes	
Figure (3):	The electrophysiological mech underlying PVCs include en automaticity, triggered activity reentry	hanced , and
Figure (4):	Signal transduction for initiatio termination of outflow tract tachy owing to cAMP-mediated tractivity	ycardia iggered
Figure (5):	Clinical disorders and in arrhythmic conditions associated PVCs	l with
Figure (6):	Examples of idiopathic PVCs with at (A) RVOT free wall; (B) RVOT s (C) right-left cusp junction; (D) pararegion; (E) left anterior fascicly anterolateral mitral annulus; anterolateral papillary muscle; as posteromedial papillary muscle	eptum; iHisian le; (F) (G) nd (H)
Figure (7):	Examples of the parameters measured ECG	ired on
Figure (8):	Panels (a,b) depict the pre-a echocardiogram showing left vent dilation and reduced ejection fract the images (c,d) control is observed month post-ablation evidence vent diameter reduction and improvem ventricular function	cricular ion. In ed at 1 cricular nent of

List of Figures Cont...

Fig. No.	Title Page	No.
Figure (9):	Panels (a,b) depict pre-ablation magnetic resonance imaging (MRI) images showing left ventricular dilation and reduced ejection fraction. In panels (c,d), images from 12-month follow-up MRI depict reduction in left ventricular diameter and improvement of ejection fraction	16
Figure (10):	Recording of the electrical activity (*) that triggers the PVCs	19
Figure (11):	The left main coronary angiogram	24
Figure (12):	12 lead ECG 16-year-old girl showed PVCs with LBBB like morphology, inferior axis, in addition to QS pattern in aVL and aVR	32
Figure (13):	12 lead ECG showed LVOT PVCs with RBBB like morphology, inferior axis, in addition to QS pattern in aVL and aVR	32
Figure (14):	Intracardiac EGM showed ventricular activation at distal ablation catheter preceded clinical PVC by 33 msec	33
Figure (15):	Fluoroscopic pictures of a 11-year-old girl (LAO view and RAO view) showing ablation catheter at LCC. Fluoroscopic picture showing ablation catheter at LCC	33
Figure (16):	Weight among the studied groups	36
Figure (17):	Height among the studied groups	36
Figure (18):	BSA among the studied groups	37
Figure (19):	Symptoms among the studied groups	39
Figure (20):	Sinus cycle length among the studied groups.	41
Figure (21):	PVC Burden among the studied groups	

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (22):	QRS duration in unsuccessfully to cases among the studied groups		44
Figure (23):	Coupling interval and post PVC in in unsuccessfully treated cases amostudied groups	ong the	44
Figure (24):	Post PVC interval in unsucce treated cases among the studied gro	v	45
Figure (25):	LVEDD among the studied groups		54
Figure (26):	LVEDV among the studied groups		54
Figure (27):	LVESD among the studied groups		
Figure (28):	LVESV among the studied groups		55
Figure (29):	LV E/A ratio among the studied grow		
Figure (30):	E deceleration time among the s	_	
	groups		56
Figure (31):	LVEF among the studied groups		57
Figure (32):	LVES among the studied groups		57
Figure (33):	RAVI among the studied groups		58
Figure (34):	LAVI among the studied groups		58
Figure (35):	TAPSI among the studied groups		59
Figure (36):	RVSP among the studied groups		59
Figure (37):	Peak systolic tricuspid annular vamong the studied groups	•	60
Figure (38):	Peak systolic septal mitral a velocity among the studied groups		60
Figure (39):	E' mitral septal annulus amon studied groups	•	
Figure (40):	E' mitral lateral annulus amon studied groups	_	61

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (41):	Peak systolic lateral mitral velocity among the studied groups.	
Figure (42):	AADs medications cessation amostudied groups	O
Figure (43):	Side effects in cases that comedications among the studied gro	
Figure (44):	Treatment success among the groups.	
Figure (45):	Agreement between baseline loca and Site of ablation in RFCA group	