

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

ELECTROMAGNETIC AND MECHANICAL ANALYSIS AND INVESTIGATIONS OF AXIAL FLUX SYNCHRO-NOUS MACHINES EQUIPPED WITH DIFFERENT PM CONFIGURATIONS

By

Amr Ahmed Abbas Abdelaziz Khader

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

ELECTROMAGNETIC AND MECHANICAL ANALYSIS AND INVESTIGATIONS OF AXIAL FLUX SYNCHRO-NOUS MACHINES EQUIPPED WITH DIFFERENT PM CONFIGURATIONS

By Amr Ahmed Abbas Abdelaziz Khader

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in **Electrical Power and Machines Engineering**

Under the Supervision of

Associate Professor

Hanafy Hassan Hanafy

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Assistant Professor

Ahmed M. Hemeida

Electrical Power and Machines Department Faculty of Engineering, Cairo University

ELECTROMAGNETIC AND MECHANICAL ANALYSIS AND INVESTIGATIONS OF AXIAL FLUX SYNCHRO-NOUS MACHINES EQUIPPED WITH DIFFERENT PM CONFIGURATIONS

By Amr Ahmed Abbas Abdelaziz Khader

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee	
Assoc. Prof. Hanafy Hassan Hanafy	Thesis Main Advisor
Prof. Amr A. Adly	Internal Examiner
Prof. Ayman Samy Abdel-Khalik Faculty of Engineering, Alexandria University	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Amr Ahmed Abbas Abdelaziz Khader

Date of Birth: 6/5/1994 **Nationality:** Egyptian

E-mail: mm.ame94@gmail.com

Phone: 01066327792

Address:GizaRegistration Date:1/10/2018Awarding Date:.../.../2021

Degree: (Master of Science)

Department: Electrical Power and Machines Engineering

Supervisors:

Assoc. Prof. Hanafy Hassan Hanafy Asst. Prof. Ahmed M. Hemeida

Examiners:

Assoc. Prof. Hanafy Hassan Hanafy (Thesis main advisor)
Prof. Amr A. Adly (Internal examiner)
Prof. Ayman Samy Abdel-Khalik (External examiner)

Faculty of Engineering, Alexandria University

Title of Thesis:

ELECTROMAGNETIC AND MECHANICAL ANALYSIS AND INVESTIGATIONS OF AXIAL FLUX SYNCHRONOUS MACHINES EQUIPPED WITH DIFFERENT PM CONFIGURATIONS

Key Words:

Axial flux machine; Halbach arrays; Analytical model; Finite element model; Optimization routine.

Summary:

This thesis presents a comparison between using conventional permanent magnet (PM) and Halbach PM array configurations in yokeless and segmented armature axial flux permanent magnet synchronous machines. An analytical model is adopted to carry out the study and finite element models are used to verify the results. A sensitivity analysis is carried out to investigate the effects of motor parameters on performance. An optimization routine is introduced to achieve some performance requirements and fully optimize the machine. The rotor disk design is studied from electromagnetic and mechanical points of views for the conventional PM and Halbach array configurations. From electromagnetic point of view, the rotor flux density is reduced. This allows the reduction of the rotor thickness and improvement the power density of the machine. However, from mechanical point of view, the air gap flux density increases. Therefore, the rotor thickness needs to be larger to support the rotor fixation for the same rotor displacement.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Amr Ahmed Abbas Abdelaziz Khader

Date: .../2021

Signature:

Acknowledgments

All praise is due to almighty ALLAH who bestowed success on me and gave me the guidance of several people who advise, assist and help me throughout the completion of this thesis.

I would like to express my sincere thanks and gratitude to my supervisors, Dr. Hanafy H. Hanafy and Dr. Ahmed Hemeida for their guidance and help throughout the accomplishment of this work.

I would like to thank Dr. Hanafy for his valuable time in guidance and reviewing the work with valuable comments and edits. I would like to thank Dr. Ahmed for his countless effort and time to get this work. They gave me lots of their time and knowledge.

I would like to thank my colleagues in electrical power department especially eng. Mostafa El-Sayed, eng. Ramadan Ragab and eng. Emad Fathy for their support and help.

Finally, I would like to thank my mother and father. Without their sacrifices and support, I could not achieve any valuable thing in this life. Special thanks to my wife for her support and encouragement. Thanks to my sisters and brother. Thanks to everyone try to help me.

Amr Ahmed Abbas Abdelaziz Kader

Table of Contents

List of	Tables .		7
List of	Figures		vii
List of	Abbrevi	iations	X
List of	Symbols	s	xii
Abstrac	ct		xii
CHAP	ΓER 1:	Introduction	1
1.1		and Radial Flux Machine Topologies	
1.2		Axial Flux Machine?	
1.3		Topologies	
	1.3.1	Single Stator Single Rotor - SSSR	
	1.3.2	Double Stator Single Rotor - DSSR	
	1.3.3	Single Stator Double Rotor - SSDR	
	1.3.4	Multi Stator Multi Rotor - MSMR	
	1.3.5	Topology Selection	
1.4		ch Array PM Configuration	
1.5		of the Thesis	
1.6		tives of the Thesis	
1.7		e of the Thesis	
~~.			
CHAP	TER 2:	Electromagnetic Modeling of YASA AFPMSM with Halbach	10
2.1	T., 4.,	Array PM Configuration	
2.1		uction	
2.2		Element Models Description	
	2.2.1	3D Finite Element Model	
2.2	2.2.2	2D Multi-Slice Finite Element Model	
2.3		etic Equivalent Circuit Model Description	
		Permanent Magnets Modeling	
	2.3.2	Reluctance Network Construction	
2.4	2.3.3	System Matrices Construction	
2.4		oss Model	
2.5		Model Verification	
	2.5.1	Linear Material Simulation	
	2.5.2	Non-Linear Material Simulation	29
CHAP	ΓER 3:	YASA Machine Rotor Disk Mechanical Analysis	33
3.1		uction	
3.2		omagnetic Constraint	
3.3	Mecha	nnical Constraint	33
3.4		nic Stability Constraint	

CHAPT	TER 4: Sensitivity Analysis and Parameters Optimization	37
4.1	Introduction	37
4.2	Sensitivity Analysis	37
	4.2.1 PM Span Ratio Sweeping Study	37
	4.2.2 PM Thickness Sweeping Study	38
4.3	Optimization Routine	
СНАРТ	TER 5: Optimization Routine Results	43
5.1	Introduction	43
5.2	Electromagnetic Results	43
5.3	Axial Force Effect on Rotor Thickness	46
СНАРТ	TER 6: Conclusions and Recommendations for Future Work	49
6.1	Conclusion	49
6.2	Recommendations for Future Work	50
Referen	ices	50

List of Tables

Table 2.1	Coefficients of (2.23) based on PM configuration and magnetiza-	
	tion direction	20
Table 2.2	Power loss fitting parameters	24
Table 2.3	Test machine parameters	25
Table 2.4	Performance comparison between 3D FE, 2D FE and MCE mod-	
	els for linear material at no-laod and rated load conditions	28
Table 2.5	35CS300 steel BH curve fitting parameters	30
Table 2.6	3D FE, 2D FE and MCE models results comparison with non-	
	linear material	30
Table 2.7	Linear and non-linear simulations' comparison for the three mod-	
	els at rated load condition only	32
Table 4.1	Routine predefined constraints' values	41
Table 5.1	Demonstration machine parameters	46

List of Figures

Figure 1.1	Faraday disk, the first generator created by Michael Faraday	1
Figure 1.2	Radial and axial machines flux paths. a)Radial path b)Axial path .	2
Figure 1.3	AFPMSM topologies	3
Figure 1.4	SSSR topology of 12 slots 8 poles machine with surface mounted	
	PMs.	
	a) 3D view b) 2D view at constant radius with flux path	4
Figure 1.5	DSSR topology of 12 slots 8 poles machine with surface mounted	
_	PMs.	
	a) 3D view b) 2D view at constant radius with flux path	4
Figure 1.6	TORUS-NN topology of 12 slots 8 poles machine with surface	
C	mounted PMs. a) 3D view b) 2D view at constant radius with flux	
	path using core wound winding type	5
Figure 1.7	TORUS-NS topology of 12 slots 8 poles machine with surface	
C	mounted PMs. a) 3D view b) 2D view at constant radius with	
	flux path using tooth wound winding type	5
Figure 1.8	YASA topology of 12 slots 8 poles machine with surface mounted	
C	PMs.	
	a) 3D view b) 2D view at constant radius with flux path	6
Figure 1.9	•	7
C	Conventional PMs configuration	7
	Ideal Halbach array	7
	Two segment Halbach array formation from conventional PMs.	
8	a) vertical (radial) PMs b) horizontal (azimuthal) PMs c) the resul-	
	tant Halbach array.	8
Figure 1.13	Higher segment number Halbach array.	
8	a) Three segments array b) Four segments array	9
Figure 2.1	3D FE models of YASA machine.	
	a) Full machine b) Axial symmetry c) Poles and teeth number sym-	
	metry	14
Figure 2.2	2D multi-slice model formation.	
	a) 3D machine geometry with axial symmetry b) Machine at slice	
	number <i>i</i> in 3D c) Machine slicing in 2D d) 2D planner machine.	
	(1)Neumann BC (2)Dirichlet BC (3)Periodic BC (4)Stator teeth	
	(5) Winding (6)Rotor disk (7) PMs	15
Figure 2.3	Conventional PM magnetization vector	18
Figure 2.4	Hal90 PM magnetization vector	19
Figure 2.5	Hal45 PM magnetization vector	19
Figure 2.6	MEC Regions	21
Figure 2.7	Reluctance network basic element	22
Figure 2.8	Curve fitting of iron losses coefficients.	
	a) dc hysteresis loss curve b)higher frequency loss curves	24
Figure 2.9	Flux density distribution. a) 3D FE model b) 2D FE model c)	
	MEC model	26

Figure 2.10	The axial air-gap flux density for the three models.	
	a) no-load condition b) full load condition	26
Figure 2.11	The circumferential air-gap flux density for the three models.	27
	a) no-load condition b) full load condition	27
Figure 2.12	The phase voltage comparison for the three models. a) no-load b) full load	27
Figure 2.13	Torque comparison for the three models.	
	a) cogging torque b) full load torque	28
Figure 2.14	Effect of changing circumferential discretization elements on the	
8	voltage and torque percentage error and CPU time	29
Figure 2.15	Effect of changing axial discretization elements on the percentage	
	voltage and torque error and CPU time	29
Figure 2.16	35CS300 steel BH curve	30
Figure 2.17	Phase voltage waveforms for the three models	31
_	Non-linear simulation air-gap flux density. a) axial b) Circumfer-	
C	ential	31
Figure 2.19	Output Torque with non-linear model	31
	3D FE model linear and non-linear simulation comparison.	
S	a) load EMF b) torque	31
Figure 2.21	2D FE model linear and non-linear simulation comparison.	
8	a) load EMF b) torque	32
Figure 2.22	MEC model linear and non-linear simulation comparison.	
8	a) load EMF b) torque	32
	1	
Figure 3.1	Rotor flux path in case of CPM configuration	34
Figure 3.2	Rotor deflection due to axial force. r is the point at which axial	
	force starts to apply	34
Figure 3.3	Eigen frequency deformation for various rotor configurations.	
	a) Circular disk rotor ($f_n = 1684.2$ Hz) b) Circular disk rotor with	
	shaft hole ($f_n = 1614$ Hz) c) Rotor disk with shaft ($f_n = 2018$ Hz)	36
Eigung 4.1	DM anon notic avvocating affacts on	
rigure 4.1	PM span ratio sweeping effects on:	
	a) mean torque b) efficiency c) mass d) rotor iron maximum flux density	38
Figure 4.2	PM thickness sweeping effects on:	50
rigule 4.2	a)mean torque b) efficiency c) cost d)rotor iron maximum flux den-	
	sity	39
Figure 4.3	Optimization routine structure	
riguie 4.5	Optimization routine structure	40
Figure 5.1	Optimization routine geometrical outputs.	
	a) slot width b) tooth axial length c) rotor iron thickness d) ma-	
	chine mass	43
Figure 5.2	Optimization routine performance output.	
	a) mean torque b) efficiency c) rotor maximum flux density d)	
	power density	44
Figure 5.3	Required electromagnetic and mechanical rotor thickness	45
Figure 5.4	Mechanical FE model.	
	a) rotor deflection b) sample of the stress contours in 3D	45

Figure 5.5	Machine performance. a) average air gap flux density per pole b)	
	axial force	46
Figure 5.6	Demonstration machine performance.	
	a) average air gap flux density per pole b) axial force	47
Figure 5.7	Required electromagnetic and mechanical rotor thickness for demon-	
	stration machine	47
Figure 5.8	Demonstration machine rotor deflection from mechanical FE model	47
Figure 5.9	Comparison between electromagnetic and total mass for machine	
	two	48
Figure 5.10	Demonstration machine. a) total cost b) power density	48