

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of Multiplex PCR in Early Diagnosis of Infective Endocarditis

Thesis

Submitted for Fulfillment of the Master Degree in Medical Microbiology and Immunology

Presented by

Omnia Abdelaziz Ibrahim El Tantawy

M.B.B.Ch., Faculty of Medicine, Zagazig University, 2014

Under supervision of

Prof. Dr. Amany Mostafa Kamal

Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Nadia Mohammed El Sheshtawy

Assistant Professor of Medical Microbiology and Immunology Faculty of Medicine, Ain Shams University

Dr. Lamyaa Elsayed Allam

Assistant Professor of Cardiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Amany Mostafa Kamal,**Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Madia Mohammed El Sheshtawy,**Assistant Professor of Medical Microbiology and Immunology,
Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Lamyaa Elsayed**Allam, Assistant Professor of Cardiology, Faculty of Medicine,

Ain Shams University, for her great help, active participation and guidance.

Omnia Abdelaziz

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	
Introduction	1
Aim of the Work	6
Review of Literature	
Infective Endocarditis	7
Pathophysiology	9
Predisposing Factors Responsible for Infective Endocarditis	16
Classification of infective endocarditis	
General Clinical Presentation	
Complications of IE	
Diagnosis	
Treatment of endocarditis	
Follow up for Infective Endocarditis	
Recurrence of IE	
Prophylaxis Guidelines for IE	
Microbiological Profile of Infective Endocarditis	
Staphylococcus	
Coagulase-Negative Staphylococci	
Streptococci	
Enterococci	
HACEK	84
Non-HACEK Gram-Negative Bacilli	
Fungal Infections	
Patients and Methods	
Results	
Discussion	
Summary	135
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term		
18F FDG-PET/CT 18F-fluorodeoxyglucose positron emission tomographic computed tomographic			
AE	Elusion buffer		
AL	Tissue lysis buffer		
AMA	American Heart Assosiation		
AMB	Amphotericin B		
ASD	Atrial septal defect		
AV	Aortic valve		
AW	Wash buffer		
BCNE	Blood culture negative endocarditis		
CDC	The Center for Disease Control and Prevention		
CI	Confidence interval		
CIED	Cardiac implantable electronic device		
CoNS	Coagulase negative staphylococci		
ECG	Electrocardiogram		
EDTA	Ethylene diamine tetraacetic acid.		
ESC	European Society of Cardiology		
FDA	Food and drug administration		
FE	Fungal endocarditis		
GNB	Gram negative bacilli		
HACEK	.Haemophilus, Aggregatibacter, Cardiobacterium spp., Eikenella and Kingella spp		
HAI	Hospital acquired infection		
IE	Infective endocarditis		
IVDU	Intravenous drug users		

List of Abbreviations Cont...

Abb. Full term
MDR Multidrug resistant
MIC Minimal inhibitory concentration
MRI Magnetic resonance imaging
MRSA Methicillin resistant staphylococcus aureus
MSCRAMMS Microbial surface components recognizing adhesive matrix molecules
MSCT Multislice computed tomography
MSSA Methicillin sensitive staphylococcus aureus
MV Mitral valve
NBTE Non bacterial thrombotic endocarditis
NPV Negative predictive value
NVE Native valve endocarditis
PCR Polymerase chain reaction
PPV Positive predictive value
PVE Prosthetic valve endocarditis
ROC Receiver operating characteristic curve
SD Standard deviation
TAE tris acetate EDTA buffer
TEE Transeosophageal echocardiography
TTETransthoracic echocardiography
TV Tricuspid valve
VGS Viridans group streptococci
VRE Vancomycin resistant enterococci
VSD Ventricular septal defect
VSE Vancomycin susceptible enterococci
WHO World health organization

List of Tables

Table No.	Title	Page	No.
Table (1):	The von Reyn Criteria for Diagr Infective Endocarditis		34
Table (2):	Definition of terms used in the p modified Duke criteria for the diag infective endocarditis (IE), modifications shown in boldface	nosis of with	
Table (3):	Definition of infective endocarditis act to the proposed modified Duke criter modifications shown in boldface	ia, with	37
Table (4):	List of primers sequences used multiplex PCR reaction		104
Table (5):	List of primers sequences used multiplex PCR reaction		105
Table (6):	Age and gender distribution amostudied patients.	_	113
Table (7):	Blood culture results and org detected among the studied patients		114
Table (8):	Multiplex PCR results and org detected among the studied patients	•	116
Table (9):	Comparison between results of culture and PCR.		120
Table (10):	Correlation between blood culture and patient characteristics		122
Table (11):	Correlation between pcr result patient characteristics.		124
Table (12):	Relation between results of blood and results of Multiplex PCR		126
Table (13):	Multiplex PCR evaluation agains culture as a gold standard for IE dia		127

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathogenesis of infective endocarditi	s10
Figure (2):	Early steps in bacterial valve coloniz	
Figure (3):	Pathology of subacute ba	
g (0),	endocarditis of the mitral valve	
Figure (4):	Osler's nodes on a finger and foot	29
Figure (5):	Colored fundus photograph of the rig	
O	showing central macular Roth spot	30
Figure (6):	Sex distribution among the s	tudied
	patients.	113
Figure (7):	Frequency of pathogens detected by	
	culture	115
Figure (8):	Frequency of pathogens detected by	PCR117
Figure (9):	Agarose gel electrophoresis of	PCR
	amplicons of 1st multiplex PCR react	
Figure (10):	Agarose gel electrophoresis of	
	amplicons of 2 nd multiplex PCR react	
Figure (11):	Comparison between results of	
T: (10)	culture and PCR	
Figure (12):	Comparison between types of orga	
E' (19)	detected by blood culture and PCR	
Figure (13):	Relation between results of blood of and results of PCR	
Figure (14):		
r igure (14):	THOO CULVE	148

Introduction

Infective endocarditis (IE) is an infection of the endocardial surface of the heart, most commonly the valves, but also may occur on mural endocardium, on cardiac septal defects, on arteriovenous or arterioarterial shunts and on intravascular devices (Cuervo et al., 2021).

Infective endocarditis (IE) encompasses native, prosthetic valves or any intracardiac devices within the heart. It is caused by the sowing of any of these structures by bacterial or, less frequently, fungal organisms (Shmueli et al., 2020).

The clinical presentation of IE is highly changeable and may represent as an acute, subacute or chronic condition that mirrors the variable causative microorganisms, underlying cardiac conditions and pre-existing comorbidities (Rajani & Klein, 2020).

Among cardiovascular disorders, infective endocarditis (IE) is considered an uncommon cardiovascular condition - its overall incidence is estimated at 3-10 episodes per 100 000 person-years. Nonetheless, this number is almost certainly underestimated as the diagnosis of endocarditis is difficult and some patients remain undiagnosed (de Sousa et al., 2021).

The overall complication rate is high in Egypt (39.4%). The main complications are potentially life-threatening,

including heart failure, severe sepsis, and renal failure (Rizk et al., 2019).

Despite therapeutic advances, the mortality rate remains high with 14–22% in-hospital mortality rates and up to 51% mortality at 10 years. It is also associated with significant morbidity including prolonged hospital stay, reduced quality of life and a high risk of re-infection (Williams et al., 2021).

The number of cases of IE per annum is probably growing due to the increasing use of prosthetic valves and cardiac implantable electronic devices also due to an increase in the number of immunocompromised patients, and extended survival of patients with congenital heart disease (Cahill & Prendergast, 2016).

It is noteworthy to state that neither the incidence nor the mortality of IE has declined in the previous 30 years. In addition, IE represents in different clinical presentation and its management varies according to physician experience which render IE a peculiar disease (Sadaka et al., 2013).

Blood-culture is commonly known as the gold standard for the detection of microbial pathogens in the bloodstream. though, possesses methodology, intrinsic some restrictions, for example it is difficult and can only identify microbes that grow under optimal cultural conditions. In contrast, PCR based techniques are sensitive to small amounts

of pathogen's DNA and are able to directly detect it in blood samples within 3-6hours, thus supporting the treatment subsequently (Trung et al., 2019).

A predisposing condition, such as rheumatic heart disease, is nowadays less common except in low-income countries. Intravenous drug use have decreased globally, but a dramatic increase of this habit has continued to alter the epidemiology of endocarditis in North America and in some Eastern European countries. Other risk factors are being increasingly detected in high-income countries, such as degenerative valve disease, intracardiac devices, indwelling catheters and immunosuppressive conditions (Cuervo et al., *2021*).

Nonetheless most microorganisms linked with IE are diagnosed by blood cultures and occasionally with serology, diagnosis in the forthcoming decade will expected to rely further on molecular biology methods in attempt to perform detection and identification of bacteria. That is owing to their noticeable competence in the etiological diagnosis with accuracy, efficiency, and anticipated wide accessibility. This is significantly crucial and feasible in the case of culture-negative endocarditis caused by preceding antibiotic intake incapability of fastidious microorganisms to cultivate (Brouqui & Raoult, 2006).

PCR-based diagnostics have been effectively developed for a wide range of microbes. Due to its incredible sensitivity, specificity, and speed of amplification, PCR has been championed by infectious disease experts for identifying organisms that cannot be grown in vitro, or in instances where existing culture techniques are insensitive and/or prolonged incubation times (Bajinka & Secka, 2017).

Multiplex PCR is a novel methodology that permits simultaneous detection of several organisms through introduction of different primers to amplify DNA region coding for particular genes of each bacterial strain targeted (Rajapaksha et al., 2019).

The multiplex PCR assay is sensitive, specific, rapid and costly. This methodology could be used in clinical laboratories for rapid identification and induction of specific and effective treatment, decreasing patient mortality and morbidity. Additionally, it may help decreasing abuse of antimicrobials that are more expensive and toxic (Ali et al., 2018).

are several multiplex assays for the fast recognition of microorganisms in clinical samples within about 8h (Bloos et al., 2012; Tsalik et al., 2010). Staphylococcus aureus has overpassed streptococci as the most common causative pathogen throughout the world and particularly in the developed world given its common association with health-care contact and invasive procedures (Khalid et al., 2020).