The Frequency of Obstructive Sleep Apnea in Asthmatic Patients, and Its Impact on Asthma Control

Thesis

Submitted for Partial Fulfillment of Master's Degree in **Pediatrics**

By

Marwa Salah Helmy

M.B.B.Ch (2013)

Under Supervision of

Prof. Dr. Laila M. Abdel Ghaffar Hegazy

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Ahmad Mostafa Allam

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Laila Mahmoud**Abdel Gaffar Hegazy, Professor of Pediatrics Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmad Mostafa Allam,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. Tarek Asaad**, Head of Neurophysiology Unit ASU, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Marwa Salah Helmy

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Bronchial Asthma	4
Obstructive Sleep Apnea (OSA)	47
Patients and Methods	85
Results	95
Discussion	110
Summary	
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Triggers of asthma: Classification of asthma severity by features:	y clinical
Table (3):	Level of asthma control	
Table (4):	Summary measures s are generally the diagnosis of OSA and for assesseverity.	ssment of
Table (5):	Asthma diagnosis:	
Table (6):	OSA symptoms:	88
Table (7):	Asthma control questionnaire (ACQ).	93
Table (8):	Sex distribution among studied pati	ents: 95
Table (9):	Age of study population (mean and S	SD): 95
Table (10):	Weight and height percentile among population (number and percent):	•
Table (11):	Types of bronchial asthma in patients:	studied
Table (12):	Number of hospital admission a admission in studied patients:	-
Table (13):	Compliance to treatment among a patient selected:	
Table (14):	Control of asthma in children according GINA assessment of asthma questionnaire;	control
Table (15):	Types of medication used to bronchial asthma in asthmatic child	
Table (16):	Number of drugs used in asthma con	ntrol: 98
Table (17):	Score of (OSA-18) for Pediatric Ob Sleep Apnea among studied patien and SD):	ts (mean

List of Tables (Cont...)

Table No.	Title	Page No.
Table (18):	Pulmonary function (spirometry)	· ·
	population (mean and SD):	99
Table (19):	OSA-18 Questionnaire:	99
Table (20):	Results of sleep study:	100
Table (21):	Polysomnogram results:	101
Table (22):	Correlation between OSA score and	d gender: 104
Table (23):	Correlation between OSA and age:	104
Table (24):	Correlation of OSA score and w	eight and
	height percentile:	104
Table (25):	OSA score and its relation with	times of
	hospital admission:	105
Table (26):	OSA score in relation to PICU add	mission in
	asthmatic children:	105
Table (27):	Correlation between OSA so	core and
	pulmonary function and asthma co	ntrol: 106
Table (28):	Correlation between types of asthm	
	OSA score in studied children:	106
Table (29):	Compliance of asthmatic chi	
	treatment and its relation to OSAs	
Table (30):	Bronchial asthma control and its	
	OSA score in studied patients:	
Table (31):	Differences of asthma control	
	patients on inhaled corticoster	
T 11 (99)	patients not in ICS:	
Table (32):	Differences of asthma control	
	patients used long acting beta ag patients not used LABA:	
Table (33):	Differences of asthma control	
1 anie (99):	patients used Leukotriene mod	
	patients used Leukotriene mod	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Prevalence of asthma symptoms an years old	
Figure (2):	Factors limiting airflow in a persistent asthma	
Figure (3):	Airway remodeling during the attac	k 10
Figure (4):	Triggers of asthma	18
Figure (5):	The goals of asthma management	33
Figure (6):	Asthma management is approach control	
Figure (7):	Obstructive sleep apnea	48
Figure (8):	Standardized grading of tonsil size.	50
Figure (9):	Children with allergic rhinitis m "allergic shiners" and "adenoi- resulting from longstanding mouth-	d facies,"
Figure (10):	Palate with a high and narrow max in a patient with obstructive sleep a	_
Figure (11):	Large tonsils often accompany of sleep apnea in children	
Figure (12):	The modified Mallampati classific simple scoring system that relates to of mouth opening to the size of to and provides an estimate of space for oral intubation by direct larynge	he amount he tongue, e available
Figure (13):	The OSA-18 quality of life questions	naire 68
Figure (14):	(A) Narrow palate in patient with a sleep apnea, prior to maxillary (RME). (B) Appearance of max expansion, with the RME device in	expansion xilla after

List of Abbreviations

Abb.	Full term
AASM	American Academy of Sleep Medicine
	Asthma control questionnaire
	Acute exacerbations of chronic obstructive
	pulmonary disease
<i>AHI</i>	Apnea hypopnea index
<i>AHR</i>	. Airway hyper-responsiveness
<i>AI</i>	Apnea index
AR	Allergic rhinitis
BS	Broullette score
COPD	Chronic obstructive pulmonary disease
<i>CP</i>	Chlamydia pneumoniae
DISE	Drug-induced sleep endoscopy
<i>ED</i>	Emergency department
<i>EEG</i>	Electroencephalographic
FEV1	Forced expiratory volume in 1 second
FVC	Forced vital capacity
HSATs	Home sleep apnea tests
ICS	Inhaled corticosteroids
<i>IgE</i>	Immunoglobulin E
<i>IL-4</i>	_
LABAs	. Long acting $\beta 2$ adrenoceptor agonist
	Leukotriene antagonists
	. Obstructive apnea index
OSA	Obstructive sleep apnea
	. Obstructive sleep apnea/hypopnea syndrome
	Peak expiratory flow
	Pulmonary function tests
	Polysomnogram
PSQ	Pediatric Sleep Questionnaire

List of Abbreviations (Cont...)

Introduction

sthma is the most common chronic respiratory disorder in childhood with worldwide increasing in its prevalence and global burden (Amer et al., 2020) the prevalence and morbidity of childhood asthma have been rising evidently during recent decades throughout the world (Hansen et al., 2013). One major risk factor associated with the increase in asthma is increasing air pollution resulting from the rise in the number of motor vehicles and the presence of industrial processes (Idris et al., 2016). While outdoor air pollution has received much focus, numerous other risk factors found within the home have been found to be associated with an increase in asthma and allergies. These include changing lifestyles and nutritional habits, breastfeeding and keeping pets (Al-Qerem et al., 2016).

Independent of its impact, pediatric asthma results in significant number of hospitalization and time lost from school and other daily activities and has been associated with poor work and school performance, and >10 million missed school days annually. Asthma-related school absenteeism affects most children 59% of students with asthma miss school annually due to respiratory symptoms (*Hsu et al.*, 2016).

Chronic asthmatic disease also has a negative effect on cognitive abilities, psychosocial behavior and academic achievement of such children (Irani et al., 2017).

In Egypt, bronchial asthma is a significant health problem among school children (El-Mashad et al., 2016).

Obstructive sleep apnea (OSA) is characterized by episodes of complete or partial upper airway obstruction during sleep, often resulting in gas exchange abnormalities and arousals, which disrupt sleep. The condition exists in 1 to 5 percent of children and can occur at any age. Untreated OSA is associated with cardiovascular complications, impaired growth (including failure to thrive), learning problems, and behavioral problems. Early diagnosis and treatment may decrease morbidity (Prasad et al., 2020).

Asthma and obstructive sleep apnea (OSA) may coexist to result in an overlap syndrome where a bidirectional relationship may deleteriously affect each other (Min et al., 2016).

Obstructive sleep apnea (OSA) and asthma are common inflammatory respiratory of diseases childhood. The similarities between and the parallel rise of both diseases raise the question of whether OSA more common in asthmatic children (Azmeh et al., 2020).

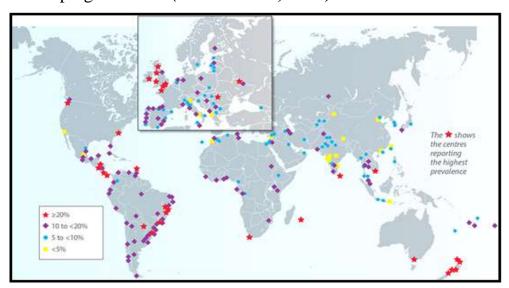
AIM OF THE WORK

This study aims at evaluating the frequency of obstructive sleep apnea in asthmatic children, and impact of OSA on asthma control.

Chapter 1

BRONCHIAL ASTHMA

sthma is a heterogeneous disease, characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary overtime and in intensity, together with variable expiratory airflow limitation (GINA, 2020).


Asthma is a reversible airway obstruction that is characterized by constriction of airway smooth muscle, hyper secretion of mucus, edema and airway hyper responsiveness (AHR), mucus secretion and thickening of the basement membrane underlying the airway epithelium. During the process of airway inflammation, complex interactions of innate and adaptive immune cells as well as structural cells and their cytokines have many important roles. It was believed that airway inflammation is orchestrated by specific allergen (*Farahani et al.*, 2014).

Asthma is characterized by a typical infiltrate, including T cells, eosinophils, and mast cells. It is important to keep in mind that the immunopathology of asthma is similar in both allergic and non-allergic form (*Cecilia et al.*, 2013).

Epidemiology of asthma Prevalence of asthma:

Asthma is one of the most common chronic diseases, with an estimated 300 million patients afflicted by this disease worldwide. The Global Initiative for Asthma (GINA) estimated that more than 10% of the population in Australia, Brazil, Canada, New Zealand, Peru, England, and United States had asthma (GINA, 2020).

The prevalence of asthma has increased in developed countries over the past 40-50 years and similar trends are emerging in developing countries, especially as they adopt western ways. Different factors underlie the development of asthma in the different parts of the world, atopy being a common risk factor in developed countries while non atopic factors may be responsible for much of asthma in the developing countries (*Marina et al.*, 2016).

Figure (1): Prevalence of asthma symptoms among 13-14 years old *(GINA, 2020)*.

Incidence and prevalence of pediatric asthma in Egypt:

The prevalence of asthma in Egyptian school children 9.4 % the asthma prevalence is more evident in urban areas as compared to rural areas. Exposure to environmental tobacco smoke, air pollution and bad housing conditions are important determinants of asthma and may explain the trend of increased asthma in Egyptian school children (*Amer et al.*, 2020).

Mortality and morbidity of asthma:

According to the WHO estimations, asthma deaths outnumbered more than 250,000 persons per year all over the world. The factors underlying increased asthma morbidity may include: increased severity of the disease, under-treatment of patients with anti-inflammatory therapy, over-reliance on bronchodilators, and delay in seeking medical help during an exacerbation. Poverty also appears to be a risk factor (*Webley and Hahn*, 2017).

Pathogenesis of asthma:

Asthma is an airway disease that can be described physiologically as a variable and partially reversible obstruction to the air flow and pathologically as overdeveloped mucus glands, broncho-constriction due to the tightening of the surrounding smooth muscles and thickening due to inflammation and scarring. Bronchial inflammation also causes narrowing due to edema and swelling caused by an immune response to allergens (GINA, 2020).