

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Radiological Characterization of Naturally Occurring Radioactive Materials in the Oil and Gas Industry at Thi-Qar Province (south of Iraq)

Thesis Submitted

To

Physics Department Faculty of Science, Ain Shams University

In

Partial Fulfillment of the Requirements for the Ph.D. Degree in Science

By

Karwan Fareed Majeed

MSc. Physics, 2014

Thesis Supervisors

Prof. Dr. Samir Ushah El khamis

Professor of Nuclear Physics Ain Shams University

Prof. Dr. Soad Abdel Monem El-Fiki

Professor of Radiation Physics Ain Shams University

Prof. Dr. Elsayed Salama Ahmed

Professor of Radiation Physics Ain Shams University

Dr. Yosuif M. Zayir AL-Bakhat

Assist. Prof. Radiation & Nuclear Safety Directorate, Iraq

Degree: Ph.D. in Physics

Title: Radiological Characterization of Naturally Occurring Radioactive Materials in the Oil and Gas Industry at Thi-Qar Province (south of

Iraq)

Name: Karwan Fareed Majeed

Thesis Supervisors	Approved
Prof. Dr. Samir Ushah El-Khamisy	
Physics Department, Faculty of Science	
Ain Shams University.	
Prof. Dr. Soad Abdel Monem El-Fiki	
Physics Department, Faculty of Science	
Ain Shams University.	
Prof. Dr. Elsayed Salama Ahmed	
Physics Department, Faculty of Science	
Ain Shams University.	
Assist. Prof. Dr. Yosuif M. Zayir AL-Bakhat	•••••
Radiation & Nuclear Safety Directorate, Iraq.	

Name: Karwan Fareed Majeed

Degree: Ph.D. in Physics

Department: Physics

Faculty: Science

University: Ain Shams

Graduation date: 2014, Gaziantep University

Registration date: 08/01/2018

Grant date: 2021

Degree: Ph.D. in Physics

Title: Radiological Characterization of Naturally Occurring Radioactive Materials in the Oil and Gas Industry at Thi-Qar Province (south of Iraq)

Name: Karwan Fareed Majeed

Approval Sheet

This Thesis for Ph.D. degree has been approved by

Prof. Dr. Soad Abdel Monem El-Fiki
Professor of Radiation Physics, Physics Department, Faculty of Science, Ain
Shams University.
Prof. Dr. Elsayed Salama Ahmed
Professor of Radiation Physics, Physics Department, Faculty of Science, Ain
Shams University
Prof. Dr. Hanan Mohamed Ahmed Diab
Professor of Radiation Physics, Egyptian Atomic Energy Authority
Prof. Dr. Kazuharu Bamba
Professor of Physics, Faculty of Symbiotic systems Science Fukushima
University.

Acknowledgement

All praises to Allah, the Lord of the Worlds for the strengths and His blessing in completing this thesis.

I owe you all my achievements to the late **Prof. Dr. Samir Ushah El-Khamisy**, Professor of Nuclear Physics, Faculty of Science, Ain Shams University, words cannot describe, pray God give you eternal life in the paradise.

I'm deeply grateful and respect to my supervisor **Prof. Dr. Soad Abdel Monem El-Fiki** Professor of Radiation Physics, Faculty of Science, Ain Shams University, for her guidance, continuous support of my Ph.D study and effort in developing the content and format of the thesis under his supervision.

I would like to express my sincere thanks to **Prof. Dr. Elsayed Salama Ahmed** Professor of Radiation Physics, Faculty of Science, Ain Shams University, for his help, advice and useful comments throughout the research.

I would like to say a very big thank you to my supervisor **Assist. Prof. Dr. Yosuif M. Zayir AL-Bakhat** Radiation & Nuclear Safety Directorate Iraq for all the support and encouragement, he gave me, during both the long two years spent undertaking my field work in Iraq.

I would like to thank **Eng. Kareem Hosny** for his continuous support and guidance to me to learn and implement the simulation and machine learning code.

I would say thank you to **Hamid Harby Khazal** Senior Engineer Chief in Radiation & Nuclear Safety Directorate Iraq for all the support and help in study area.

I would say thank you and deeply grateful **Moaath Salih Abdulrahman** Engineer in Presidency of the Republic Iraq for all the support and help.

Contents

Contents

Item	Page
Acknowledgement	
Contents	I
List of Table	V
List of Figures	VII
List of Abbreviations	X
Abstract	XII
Summary	XIV
CHAPTER 1	
GENERAL INTRODUCTION	1
LITERATURE REVIEW	2
AIM OF THE WORK	7
CHAPTER 2	
2.1 Naturally occurring radioactive materials (NORM)	8
2.2 Sources of NORM	10
2.2.1 Uranium (U) Decay Series	11
2.2.2 Thorium Decay series (Th)	13
2.2.3 Potassium radionuclide (K)	14
2.3 Naturally occurring radioactive materials (NORM) in	
the oil and gas industry	15
2.4 Worldwide Recorded levels for NORM	16
2.5 Worldwide Norm Clearance Levels	20
2.6 Contaminated waste produced in oil and gas industries.	21
2.6.1 Sludge	21
2.6.2 Scale	22
2.6.3 Produced Waters	23

2.6.4 Contaminated Equipment	23
2.7 Health hazards of Naturally occurring radioactive	
materials	25
2.7.1 Establishment of limits of exposure	25
2.7.2 Exposure pathways	28
2.7.3 External exposure	28
2.7.4 Internal exposure	29
2.7.5 Health effects	30
2.8 Gamma-ray properties	31
2.9 Gamma-ray interaction with matter	31
2.9.1 Photoelectric effect	31
2.9.2 Compton scattering	32
2.9.3 Pair production	34
2.10 Radiation Exposure Doses and units	34
2.10.1 Dose equivalent	35
2.13.2 Absorbed dose	36
2.10.3 Effective dose equivalent	36
2.10.4 Dose rate	37
CHAPTER 3	
3.1 Study Area	38
3.1.1 Nasiriyah oil field (NOF)	38
3.1.2 Al-Gharraf oil field (AGOF)	39
3.1.3 Subba oil field (SOF)	40
3.1.4 Thi-Qar refinery (TQR)	40
3.1.5 Nasiriyah Gas Factory (NGF)	40
3.1.6 Nasiriyah depot pumping station (NDPS)	40
3.2 Detectors	40

3.2.1 Rad Lye (PRD)	44
3.2.2 Ludlum (2241-2)	45
3.2.3 Gamma spectroscopy	45
3.2.3.1 Gamma spectrometry System with (HPGe)	47
3.3 COLLECTION AND PREPARATIONOF SAMPLES	48
3.3.1 Soil samples	50
3.3.2 Sludge samples.	50
3.3.3 Rocks samples	51
3.3.4 Scale samples	52
3.3.5 clay samples	53
3.3.6 water samples	54
3.3.7 Contaminated water	55
3.3.8 Crude oil	56
3.4 Activity calculation of Norm	57
3.5 Detection efficiency	58
3.5.1 Relative Efficiency	58
3.5.2. Absolute efficiency	60
3.5.3 Intrinsic efficiency	60
3.6 Energy calibration	61
3.7 Radiological hazard assessment	61
3.7.1 radium equivalent activity (Ra_{eq})	61
3.7.2 External hazard index (Hex)	62
3.7.3 Internal hazards index (Hin)	63
3.7.4 Gamma Index (Ιγ)	63
3.7.5 Gamma absorbed dose rate (D)	63
3.7.6 Annual effective dose equivalent (AEDE)	64
3.7.8 Annual gonadal dose equivalent (AGDE)	64
3.7.9 Excess lifetime cancer risk (ELCR)	65

CHAPTER4

4.1 Introduction	66
4.2 NORM concentrations in soil	66
4.3 NORM concentrations in sludge	69
4.4 NORM concentrations in scale	70
4.5 NORM concentrations in clay	75
4.6 NORM concentrations in rocks	78
4.7 NORM concentrations in water	81
4.8 NORM concentrations in contaminated water	81
4.9 NORM concentrations in crude oil	81
4.10 Radiological hazard assessment	81
4.10.1 (Ra _{eq})	82
4.10.2 (H _{ex}) and (H _{in})	83
4.10.3 (D _{out}) and (D _{in})	84
4.10.4 (AEDE) _{out} and (AEDE) _{in}	86
4.10.3 (Ιγ) and (ELCR)	88
CHAPTER 5	
5.1 Introduction	90
5.2 Same application	91
5.3 Data Generation	92
5.4 ANN Model Results	96
Conclusion	101

List of Tables

NO.	Caption	Page
2.1	Activity Concentrations of Naturally occurring	17
	radioactive materials [IAEA 2003]	
2.2	Radioactivity Concentration Levels of Radium	18
	Nuclides Reported in Different Countries.	
2.3	Range of Activity Levels in Produced Water from	19
	The Oil Fields	
2.4	The European Commission Clearance Levels	20
2.5	The Average Worldwide Activity Levels of U, Th	20
	and K	
2.6	The Exemption Activity Levels of NORM as Recommended by the IAEA Basic Safety Standards	21
2.7	Maximum permissible concentrations of radio- isotopes in water and air for occupational exposure for a 40-hour week.	27
2.8	Relationship between quality factor and LET	36
4.1	NORM concentrations in soil	67
4.2	NORM concentrations in sludge	70
4.3	NORM concentrations in scale	73
4.4	NORM concentrations in clay	76
4.5	NORM concentrations in rocks	79
4.6 4.7	$Radium \ Equivalent \ (Ra_{eq})$ $External \ (H_{ex}) \ and \ internal \ hazards \ indices \ H_{in}$	82 84
4.8 4.9	Absorbed dose rate (D_{out}) and (D_{in}) $(AEDE)_{out}$ and $(AEDE)_{in}$	85 87

4.10	$(I\gamma)$ and $(ELCR)$	88
5.1	Energies of Interest in Radiological Environmental Analysis	93
5.2	Energies of Interest in Radiological Environmental Analysis	95
5.3	Summary of the Calibrated MCNP Model Results	95
5.4	Regression and Mean Squared Error Metrics used in Determining the Number of Nodes in the Hidden Layer	97