

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

A Comparative study of Robot-Assisted Laparoscopic Intracorporeal Versus Open Urinary Diversion

Thesis

Submitted in Partial Fulfillment of M.D Degree in Urology

By

Mahmoud Ibrahim Mahmoud Khalil

M.B.Bch., M.Sc. of Urology

Supervised by

Prof. Mohamed Sherif Mohamed Adel Mourad

Professor of Urology Faculty of Medicine - Ain Shams University

Dr. Khaled Mokhtar Kamal

Assistant Professor of Urology Faculty of Medicine - Ain Shams University

Dr. Ehab Abdallah Eltahawy

Assistant Professor of Urology University of Arkansas for Medical Sciences (UAMS) Little rock, Arkansas, United States of America

Dr. Mohamed Hamdy Ibrahim Kamel

Assistant Professor of Urology University of Arkansas for Medical Sciences (UAMS) Little rock, Arkansas, United States of America

Dr. Ahmed Farouk Mahmoud

Assistant Professor of Urology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, I would like to thank "ALAH", the most kind and the most merciful giving me the power, patience and persistence to accomplish this work regardless all difficulties.

I would like to thank **Prof. Sherif Mourad;** Professor of Urology, Ain Shams University for his continuous understanding, encouragement and support. I also appreciate the efforts of **Dr. Ahmed Farouk;** lecturer of urology, Ain Shams university for his helpful advice and precious time.

I would like to express my deepest gratitude and great respect to **Dr. Khaled Mokhtar Kamal,** Assistant Professor of Urology, Faculty of Medicine, Ain Shams University, under his supervision I had the honor and pleasure to proceed with work. His constant guidance encouragement and foresight made all the difference for me. May Allah be pleased with him and grant him the highest level in Gannah, Amen.

I am also grateful to **Dr. Mohamed Kamel**, associate professor of urology, University of Arkansas for medical sciences, and **Dr. Ehab Eltahawy**, Associate Professor of Urology, University of Arkansas for medical sciences for allowing me to complete my study at the University of Arkansas for medical sciences. I am thankful for their support and sincere guidance throughout the study.

Finally, I would like to express my profound gratitude to my family; my father; Dr. Ibrahim Khalil, my mother; Dr. Samia Abdelfattah, my wife; Dr. Amira Elhariry and my kids; Mariam, Yahia and Noor for their continuous encouragement and support.

Mahmoud Khalil

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Review of Literature	
 History and Advantages of Robotic Surgery 	5
Robot-Assisted Laparoscopic Urinary Diversion	on24
 Urinary Diversion: Considerations and Comp 	lications48
Patients and Methods	98
Results	124
Discussion	153
Summary and Conclusion	174
References	176
Arabic Summary	

List of Tables

Table No.	Title	Page	No.
Table (1):	An enhanced recovery after surger radical cystectomy ± Neobladder focus on reduced bowel preparation standardized feeding and anal regimens.	using and lgesic	27
Table (2):	Illustration of American Society Anesthesiologists (ASA) Score		104
Table (3):	Clavien Dindo Classification		122
Table (4):	Patient demographics		125
Table (5):	Complications according to the o		146
Table (6):	Pathological outcomes of the study capatients.		148
Table (7):	Binary logistic regression analysis predictors of postoperative complica among the studied cohort	tions	152

List of Figures

Fig.	No.	Title F	age No.
Figu	re (1):	a Modern reconstruction of da Vin	
Figu	re (2):	robot. b Mandolin- playing ladyPUMA robot	
_	re (2): re (3):	a AESOP. b Zeus robot	
_	re (3): re (4):	da Vinci Surgical System ©[20	
rıgu	re (4):	Intuitive Surgical, Inc.	
Figu	re (5):	Picture of single-port specific rob	10
rıgu	16 (0).	instruments	
Figu	re (6):	Illustration of single-port rob	
rıgu	16 (0).	instruments at work in a patient	
Figu	re (7):	Key aspects of ERAS protocols	
_	re (8):	Position of patient during the rob	
rigu	10 (0).	cystectomy	
Figu	re (9):	Different robotic instruments	
_		Goh and colleagues port placement	
_		City of Hope port placement (A)assist	
5"	10 (11).	trocar, (R) = robotic trocar, (C)cam	
		trocar	
Figu	re (12):	Karolinska group port placement	
_		Pruthi and colleagues port placement	
_		Use of a chest tube to assist w	
0	- 、 /	detubularization of bowel	
Figu	re (15):	Karolinska-modified Studer neobladde	
_		University of Southern Californ	
O		modified Studer neobladder	
Figu	re (17):	Pyramid neobladder	44
_		Y-pouch neobladder	
Figu	re (19):	Coronal CT image shows dilated flu	uid-
		filled small-bowel loops with a moderate	tely
		collapsed distal ileum and colon, but d	
		not depict the cause of obstruction	65
Figu	re (20):	Enterocutaneous fistula	66

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (21):	Ileal conduit 11 years after construc	etion.
	Shrunken, thick walled conduit 11 y	
	after reconstruction	67
•	Stomal necrosis	
Figure (23):	CT image shows parastomal hernia	
	and intestinal obstruction after	
	creation of an ileal conduit	
•	Stomal stenosis	
Figure (25):	Stoma, or abdominal wall-rel	
	changes	
•	Urinary leakage	
Figure (27):	Benign ureteral stricture in a 54-year	
	man after Studer-type neobla	
	construction	
Figure (28):	Unenhanced CT image obtained in	
	year-old man 1 year after neobla	
	construction shows calculus in	
	reservoir	
Figure (29):	Multiple calculi in a 78-year-old m	
	year after cystectomy and uri	-
T1 (00)	diversion with ileal conduit creation	
Figure (30):	Urinoma in a 61-year-old man 18	•
	after cystectomy and urinary diver	
D: (01)	with the Bricker procedure	
Figure (31):	Hematoma in a 66-year-old man 7	•
	after cystectomy and urinary diver	
E' . (99)	with creation of an ileal conduit	
r igure (32):	Typical lymphocele in a 59-year-old	
	1 month after cystectomy	
	lymphadenectomy and ileal cor	
	creation for treatment of bla	
Figure (99).	carcinoma	
r igure (33):	Female patient on the OR table	
	mark of stoma location	108

List of Figures (Cont...)

Fig. No.	Title F	Page	No.
Figure (34):	Ports locations just before docking of	the	
			109
Figure (35):	Intraoperative picture showing rob		
	arms after docking and connections	•	
	before starting surgery (patient head		440
F: (9.6)	the right side of the picture)		110
Figure (36):	OR picture showing the surgeon at		
	robotic console and the scrubbed assist		
D' (95)	during surgery		111
Figure (37):	Pulling the ileal conduit stoma	-	
	Babcock clamp after undocking of		110
E' (90)	Robot		112
r 1gure (38):	Picture showing the abdomen of		110
E: (20).	patient just after surgery		113
r igure (39):	Drain site and stoma appliance a		119
Figure (40).	placement		
•	V- Loc suture Type of urinary diversion in both group		
•	Difference of mean age of patients in b	-	124
rigure (42):			127
Figure (42).	groups Gender distribution in both groups		
•	Ethnicity differences in both groups		
•	ASA score recorded in both groups		
•	Preoperative diagnosis in both groups		
•	Concurrent surgical procedures in b		101
119410 (11).	groups		136
Figure (48):	Stapled vaginal vesicostomy. The anvi		200
1 18011 0 (10)	a 60 cm GIA stapler is placed into		
	urethra and the other arm of the stap		
	into the vagina	•	140
Figure (49):	PICC line		

List of Abbreviations

Abb.	Full term
A 777	4 , 1:1
<i>AKI</i>	.Acute kidney injury
<i>ASA</i>	.American society of anesthesiologist
ASIS	.Anterior superior iliac spine
<i>BMI</i>	.Body mass index
<i>CBC</i>	$. Complete\ blood\ count$
<i>CT</i>	$. Computed\ tomography$
DVC	.Dorsal vein complex
ERAS	.Enhanced recovery after surgery
GCS	. Glasgow coma scale
<i>ICIC</i>	$. In tracorpore a l\ il eal\ conduit$
<i>ICNB</i>	$. In tracorpore al\ neoblad der$
ICUD	.Intracorporeal urinary diversion
<i>IPSS</i>	$. International\ prostate\ symptom\ score$
IR	.Interventional radiology
LOS	. Length of stay
<i>MBP</i>	$. Mechanical\ bowel\ preparation$
<i>MICU</i>	. Medical intensive care unit
<i>MSK</i>	.Memorial Sloan Kettering
<i>NBM</i>	. Nothing by mouth
NCDB	.National cancer database
ORC	. Open radical cystectomy
<i>PLND</i>	$. Pelvic\ lymph\ node\ dissection$
<i>QOL</i>	. Quality of life

List of Abbreviations (Cont...)

Abb.	Full term
RARC	Robotic assisted radical cystectomy
<i>RC</i>	Radical cystectomy
RCTs	Randomized controlled trials
RHQOL	Health related quality of life
RLESS	Robotic laparoendoscopic single site
SCC	Squamous cell carcinoma
SHIM	Sexual health inventory for men
<i>SICU</i>	Surgical intensive care unit
SMs	Surgical margins
TAP block	Transversus abdominus plane block
TCC	Transitional cell carcinoma
UAMS	University of Arkansas for medical sciences
UCS	Uretero-cutaneousotomy
<i>UIA</i>	Uretero-ileal anastomosis
UTI	Urinary tract infection

INTRODUCTION

Trinary tract reconstruction aiming to urine diversion after radical cystectomy for bladder cancer represents a complex process that attempts to maximize health- related quality of life (HRQOL) for patients after surgery (Gschwend, 2003).

Open radical cystectomy (ORC) remains the gold standard treatment of localized muscle invasive bladder cancer and high-risk non-muscle-invasive bladder cancer, however, the use of a minimally invasive approach is advocated to reduce the morbidity and mortality associated with the open technique (Huang and Stein, 2007).

Robotic surgery is being increasingly used in the treatment of high grade invasive urothelial carcinoma that requires radical cystectomy. Surrogate pathologic and early follow-up data from multiple centers suggest that the robotic approach may provide oncologic equivalence to open surgery (Hellenthal et al., 2010).

Use of robotic technology allows the surgeon to perform delicate operative steps in the confined pelvic space with precision and accuracy; steps that may be difficult to perform with open or conventional laparoscopic approach (Rehman et al., 2011).

Since over a decade, Menon and colleagues reported the first robot-assisted radical cystectomy (RARC). This development was much anticipated after the success of robotic technology for performing radical prostatectomy (Menon et al., 2003).

Robotic cystectomy and intracorporeal urinary diversion is technically challenging. Therefore, many surgeons are still adopting the hybrid approach when performing the cystectomy using robotic assistance and completing the urinary diversions extracorporeally to shorten the operating time. Wiklund and associates have pioneered the technique of intracorporeal urinary diversion creating both neobladders and ileal conduits completely intracorporeally (Jonsson et al., 2011).

Equally, Desai and Gill presented remarkable outcomes using a modification of the aforementioned technique (Goh et al., 2012).

In addition, the 10-times magnification and EndoWrist an ideal platform to perform technology provide intracorporeal urinary diversion, which would allow the procedure to be performed in a minimally invasive way, and may eventually reduce the complications of a morbid procedure. Soon after RARC, the first robot-assisted intracorporeal neobladder was reported by Beecken and colleagues (Beecken et al., 2003).

Despite an early report of intracorporeal urinary diversion (ICUD), it was selectively performed. Increase in operative time, lack of expertise with the new technology, and