

Biochemistry department Faculty of Science Ain Shams University

The role of hepatic and adipose tissues cyclic adenosine monophosphate during the development of experimental non alcoholic fatty liver

Thesis

Submitted for partial fulfillment of PhD degree in biochemistry

By Ashraf Khaled Mahmoud Abo El-yazeed Awaad

Master degree in Biochemistry (2014)

Medical Research Institute – Alexandria University

Under the supervision of

Prof Dr. Magdy Mahmoud Mohamed Prof Dr. Maher Abd El-Nabi Kamel

Professor of Biochemistry Faculty of Science Ain Shams university

Prof Dr. Madiha Hassan Helmy

Professor of Biochemistry Medical Research Institute Alexandria University

Professor of Biochemistry Medical Research Institute Alexandria University

Prof Dr. Magda Ismail Youssof

Professor of Histochemistry and Cell **Biology** Medical Research Institute

Prof Dr. Marwa Galal El-Deen Abdou Hegazy

Ass. Professor of Biochemistry Faculty of Science Ain Shams university

Declaration

I declare that this **thesis** has been composed by myself and that this work, which has been recorded here in after has been done by myself. It has not been submitted for a **degree** at this or any other university.

Ashraf Khaled

Dedication

I would like to dedicate this thesis with all my love to my family and for all my friends and those from whom I have learned, whenever and wherever they are.

Ashraf Khaled

Biography

Name : **Ashraf Khaled Mahmoud**

Abo El-yazeed Awaad

Date of Graduation: May 2007, Faculty of Science,

Biochemistry Department, Alexandria University

Degree awarded : B.Sc. in Biochemistry

Matriculation year : 2015

Year Grants : 2020

Supervisors :

- **1. Prof. Dr. Magdy Mahmoud Mohamed -** Professor of Biochemistry Faculty of Science Ain Shams university
- **2. Prof Dr. Maher Abd El-Nabi Kamel -** Professor of Biochemistry Medical Research Institute Alexandria University
- **3. Prof Dr. Madiha Hassan Helmy -** Professor of Biochemistry Medical Research Institute Alexandria University
- **4. Prof Dr. Magda Ismail Youssof -** Professor of Histochemistry and Cell Biology Medical Research Institute Alexandria University
- **5. Dr. Marwa Galal El-Deen Abdou Hegazy** Associate Professor of Biochemistry Faculty of Science Ain Shams university

The role of hepatic and adipose tissues cyclic adenosine monophosphate during the development of experimental non alcoholic fatty liver

Presented by

Ashraf Khaled Mahmoud Abo El-yazeed Awaad

For the Degree of PhD of Science

In Biochemistry

Examiner's Committee Approved

Prof. Samar Kamal Kassim	•••••
Professor of Biochemistry Faculty of Medicine Ain Shams University	
Prof. Mahmoud Hassan Romeih	•••••
Professor of Biochemistry, Molecular biology de Theodor Bilharz Research institute (TBRI) Cairo University Prof. Magdy Mahmoud Mohamed	epartment

Professor of Biochemistry Faculty of Science Ain Shams University

ACKNOWLEDGEMENTS

الْحَمْدُ لِلَّهِ رَبِّ الْعَالَمِين

First of all, full praise and gratitude are to Allah for his blessings and the lord of all creatures who taught man the whole science and the names of all things.

This thesis is prepared to fulfil the requirement in the **PhD** of Science degree in the Faculty of Science in Ain Shams University.

I am greatly indebted to **Prof. Dr** /**Magdy Mahmoud Mohamed,** Professor of Biochemistry, Faculty of Science, Ain Shams University, Egypt for his exemplary guidance, monitoring and constant encouragement throughout the course of this thesis. The blessing, help and guidance given by his time to time shall carry me a long way in the journey of life on which I am about to embark. Really, I could not have imagined having a better advisor and mentor for my PhD.

I would like to express my sincere gratitude to my advisor **Prof. Dr**/Maher Abd El-Nabi Kamel, Professor of Biochemistry, Medical
Research Institute, Alexandria University for the continuous support
of my PhD study and research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all
the time of research and writing of this thesis.

I wish to express my sincere gratitude and deep regards to **Dr. Marwa Galal El-Deen Abdou Hegazy** Associate Professor of Biochemistry, Faculty of Science, Ain Shams University, Egypt for her kind cooperation, her able guidance and useful suggestions, which help me in completing this thesis. I found in her a decent, kind and a greatly respective person.

My deepest appreciation is extended to **Prof Dr. Madiha Hassan Helmy,** Professor of Biochemistry, Medical Research Institute, Alexandria University and **Prof Dr. Magda Ismail Youssof,** Professor of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University for supervision, moral support, instructive guidance and kind advice.

My special thanks are due to **Dr. Marwa M. Essawy** Lecturer of Oral Pathology Faculty of Medicine Alexandria University and **Dr. Eiman I. Zaki,** Lecturer of Histochemistry and Cell Biology Faculty of Medicine Alexandria University for their moral support, instructive guidance and kind advice.

Special thanks are extended to **Prof Dr. Ghada Mourad,** Professor of Histochemistry and Cell Biology Faculty of Medicine Alexandria University, **Dr. Radwa Mehana,** Associate Professor of Physiology Faculty of Medicine Alexandria University and **Dr. Marwa Morsy,** Lecturer of Oral Pathology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt. for providing a stimulating and fun environment in which to learn and grow.

My special thanks go to my colleagues who always encourage and help me, especially **Dr. Mohamed El-Kady,** Researcher of Nanotechnology, Medical Research Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA), Faculty of Medicine, Alexandria University.

My deepest gratitude goes to my family for their unflagging love and support throughout my life; this dissertation is simply impossible without them. I am indebted to **my mothers** and **my fathers**, for their care and love. I have no suitable word that can fully describe their everlasting love to me. I remember them constant support when I encountered difficulties. I feel proud of my brothers **Ph. Islam**, **Ph. Ahmed** and **Dr. Mohamed**. To all of them, I dedicate this thesis.

I wish to thank my dear **wife /Sarah Salah Saleh** for her continuous support to me and standing next to me in the most difficult moments of my life, actually I thank Allah he gave me a woman like you. Really my life became beautiful in your presence. Many thanks to my daughter /**Salama** and my Son /**Anas** & **Khaled** which made my life more precious.

Really, this PhD would never have been completed without the efforts of several people who I appreciate their instructive support.

Ashraf Khaled

List of Contents

Title	Page No.	_
Abstract	•••••	.I
List of Abbreviations	I	II
List of Tables	V	II
List of Figures		X
Introduction	•••••	1
Aim of the Work	••••••	5
1. Review of Literature	•••••	6
1.1 Liver anatomy		6
1.2 Liver physiology and energy metabolism.		7
1.2.1 Hepatic carbohydrates metabolism		7
1.2.1.1 Glycogenesis and glycogenolysis	••••••	9
1.2.1.2 Gluconeogenesis		11
1.2.2 Hepatic lipid metabolism	••••••	14
1.2.2.1 De novo Fatty acid synthesis	••••••	15
1.2.2.2 Liver fatty acid β oxidation and ketog	enesis	19
1.2.3 Proteins and amino acids metabolism		19
1.3 Liver diseases	••••••	20
1.4 Non-alcoholic fatty liver disease	••••••	22

1.4.1 Pathogenesis of NAFLD	23
1.4.1.1 Insulin resistance as a predominant factor for NAFLD	23
1.4.1.2 The two-hit hypothesis of NASH pathogenesis	24
1.4.1.2.1 Steatosis	27
1.4.1.2.2 Steatohepatitis and fibrosis	28
1.4.1.2.3 FFA lipotoxicity	31
1.4.1.3 The third hit hypothesis of NASH pathogenesis	31
1.5 Adipose tissues	34
1.5.1 Brown adipose tissue	35
1.5.2 White adipose tissue	36
1.5.3 Main functions of adipose tissue	38
1.5.3.1 Lipogenesis and lipolysis	38
1.5.3.2 Adipose tissue as secretory organ	41
1.6 Adiponectin	43
1.7 Cyclic adenosine 3', 5'-phosphate (cAMP)	45
1.7.1 Cyclic AMP Transduction Pathway	45
1.7.2 Main effectors of cAMP	47
1.7.3 Cyclic AMP and Gene Transcription in the Liver	49
1.7.3.1 cAMP-Responsive Promoter Element	49
1.7.3.2 CRE-Binding Protein Family	50

1.7.3.3 Transcriptional Activation	51
1.7.3.4 Mechanisms of Repression	55
1.7.4 Role of Cyclic AMP in Liver Proliferation and Regeneration	60
1.7.5 Role of Cyclic AMP in Liver Metabolism	62
1.8 The role of cAMP in NAFLD	67
2. Materials and Methods	70
2.1 Animals and diet	70
2.2 Experimental procedures	71
2.3 Methods	72
2.3.1 Glucose homeostasis analysis	72
2.3.1.1 Determination of fasting blood glucose	72
2.3.1.2 Determination of insulin in rat serum	73
2.3.1.3 Insulin resistance by (HOMA)	77
2.3.2 Determination of adiponectin in rat serum	78
2.3.3 Liver function test	83
2.3.3.1 Determination of Alanine aminotransferase	83
2.3.3.2 Determination of aspartate aminotransferase	85
2.3.3.3 Gamma glutamyl transaminases (GGT)	87
2.3.3.4 Determination of Total and Direct Bilirubin	88
2.3.4 Determination of Lipid profile	91

2.3.4.1 Determination of serum triglycerides	91
2.3.4.2 Determination of serum total cholesterol	93
2.3.4.3 Determination of serum HDL-Cholesterol	95
2.3.4.4 Calculation of serum LDL- Cholesterol	97
2.3.5 Determination of lipid content of the liver	98
2.3.6 Determination of Cyclic AMP in rat liver, white and brown adipose tissues	99
2.3.7 Determination of CREB in rat liver, white and brown adipose tissues	104
2.3.8 Determination of ICER gene expression by Reverse— Transcriptase— Polymerase chain reaction (RT-PCR)	110
2.3.8.1 RNA isolation	110
2.3.8.2 RNA integrity and quantification	114
2.3.8.3 One step Quantitative real time-polymerase chain reaction (qRT-PCR)	114
2.3.9 Histological assessment	120
2.3.10 Statistical analysis	120
3. Results	121
3.1 Body weight	121
3.2 Glucose homeostasis parameters	123
3.3 Adiponectin levels	128

3.4 Liver function test	130
3.5 Lipid Parameters	136
3.5.1 Serum Lipid profile	136
3.5.2 Hepatic lipid content	141
3.6 cAMP levels in the liver, white and brown adipose tissues of control and NAFLD rats	144
3.7 CREB levels in the liver, white and brown adipose tissues of control and NAFLD rats	148
3.8 The change in gene expression of ICER in the liver, white and brown adipose tissues of control and NAFLD rats	152
3.9 Correlation studies	157
3.10 Histological assessment	170
4. Discussion	180
5. Summary and Conclusion	203
6. References	212
Arabic summary	
Arabic abstract	

Abstract

The role of hepatic and adipose tissues cyclic adenosine monophosphate during the development of experimental non alcoholic fatty liver. Ashraf Khaled Mahmoud Awaad, Biochemistry Department, Faculty of Science, Ain Shams University.

Non-alcoholic fatty liver disease (NAFLD) has emerged as the most common chronic liver disease in developed countries due to the increasing incidence of obesity and diabetes. The pathogenesis of NAFLD is multi-organs in which many organs are participated with the liver and adipose tissues are of central importance. Two types of adipose tissue can be distinguished, which have essentially antagonistic functions. Whereas white adipose tissue (WAT) stores excess energy as triglycerides, the function of brown adipose tissue (BAT) is to dissipate energy production of through the heat. Cyclic adenosine monophosphate (cAMP), a key second messenger molecule, is one of the most promising pathways that regulates various cellular functions including lipid and carbohydrate metabolism, inflammation, cell differentiation and tissue regeneration. cAMP induce gene transcription through activation of cAMPkinase (PKA), dependent protein and consequently phosphorylation of the transcription factor cAMP response element-binding protein (CREB). CREB activity is strictly regulated by the level of the inducible cAMP early repressor (ICER), a natural antagonist that contains neither activating nor repressing domains. **Objective:** The present study was aimed to evaluate the role of hepatic, white and brown adipose tissues cAMP in the development of experimental NAFLD in an attempt to clarify the pathogenesis of the disease.

Methods: The experimental rats were divided into two groups (35 each): control group which fed a standard diet, and NAFLD group that fed a high fat diet (HFD) for 14 weeks. The blood was collected for serum separation then stored at -80° C, for future biochemical analysis. The whole liver, WAT and BAT were immediately removed and weighed. One lobe of liver from each animal was removed for histological assessment; the remaining lobes as well as adipose tissues were stored at -80° C, for cAMP and CREB quantification by ELSA kits and ICER expression by reverse transcriptase polymerase chain reaction (RT-PCR).

Results: The highest content of cAMP and CREB were detected in BAT of the control rats. However, NAFLD rats revealed a remarkable elevation in cAMP and CREB levels in the liver and WAT, while cAMP and CREB levels in BAT decreased to be 6.18 and 28.62 fold control value, respectively. On the other hand, ICER gene expression in the liver and WAT was downregulated in NAFLD rats, compared to control rats, however, NAFLD rats showed about 1.72 fold upregulation of ICER gene expression in BAT compared to control.

Conclusion: We conclude that cAMP pathway is complex and greatly influenced by numerous factors such abundance, localization and repression. Also, our results indicate that cAMP pathway provides an early signal in the progression to NAFLD representing a promising therapeutic target for the treatment of the disease.

Keywords: NAFLD, cAMP, CREB, CREM, ICER, AC, PKA, WAT, BAT