

بسم الله الرحمن الرحيم

-Caron-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

Study of Clinical Utility of miRNA-31 in diagnosis of Bladder Cancer in Egyptian Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

By

Mostafa Mohamed El-Sisy Mostafa

M.B.B.Ch., October 6 University

Under supervision of

Professor/ Ghada Sadek Sabbour

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Professor/ Mona Mohamed Hassan

Professor of Clinical Pathology Theodor Bilharz Research Institute

Doctor/ Heba Hassan Aly

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Doctor/ Shimaa Mostafa Ismaiil

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor**/ **Ghada Sadek Sabbour**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Professor**/ Mona Mohamed Hassan, Professor of Clinical Pathology, Theodor Bilharz Research Institute, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Doctor/ Heba Hassan Aly**, Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Doctor/Shimaa**Mostafa Ismaiil, Lecturer of Clinical Pathology, Faculty of Medicine, Ain

Shams University, for her kindness, supervision and cooperation in this work.

I'd like to express my respectful thanks and profound gratitude to **Prof. Tarek Ramzy El-Leithy,** Professor of Urosurgery, Theodor Bilharz Research Institute, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Eman Seyam Mahgoub**, Lecturer of Clinical Pathology, Theodor Bilharz Research Institute, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Mostafa Mohamed El-Sisy

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	4
Subjects and Methods	36
Results	50
Discussion	59
Summary and Conclusion	65
Recommendations	68
Limitation of the Study	69
References	70

List of Abbreviations

Abb.	Full term
AGO	. Argonaute
	Serine/threonine kinase
	. Alkaline phosphatase
	. Alanine aminotransferase
AR	. Androgen Receptor
	. Age-standardized incidence
	. Aspartate aminotransferase
BCA	
CAM-DR	. Cell adhesion mediated drug resistance
CBC	. Complete blood count
CDKN	. Cyclin dependent kinase inhibitor
CDKN2A	. Cyclin-dependent kinase inhibitor 2A
CIS	. Carcinoma in situ
CT	. Computed tomography
FAF1	. Fas-associated factor 1
FGFR3	. Fibroblast growth factor receptor 3
GGT	. Gamma glutamyl transferase
GIT	. Gastrointestinal tract
GST	. Glutathione S-transferase
ITGA5	. Intergrin alpha 5
let-7	. Lethal-7
LOH	. Loss of heterozygosity
MIBC	. Muscle-invasive bladder cancer
miRISC	. MiRNA-induced silencing complex
miRNAs	. MicroRNAs
MLK3	. Mixed lineage kinase 3
MMC	. Mitomycin C
NANOG	. Nanog Homeobox
NAT	. N-acetyltransferase

List of Abbreviations Cont...

Abb.	Full term
NMIBC	Non-muscle-invasive bladder cancer
	Open reading frame
	Phosphatidylinositol 4,5-bisphosphate 3-
	kinase catalytic subunit alpha isoform
PKC-α	Protein kinase C-α
PTEN	Phosphatase and tensin homolog
qPCR	Quantitative real time PCR
RB1	Retinoblastoma protein
RISC	miRNAs/minimal miRNA-induced silencing
	complex
RNA-Seq	RNA sequencing
RT	Reverse Transcription
SCC	.Squamous cell cancers
shRNA	Small hairpin RNA
SIRT-1	Sirtuin-1
SOX2	Box 2
SRY	Sex determining region Y
STAG2	Stromal antigen 2
TBRI	Theodor Bilharz Research Institute
TCC	Transitional cell carcinoma
TERT	Telomerase reverse transcriptase
UBC	Urothelial bladder cancer
WHO	.World Health Organization
ZEB1/2	Zinc finger e-box binding homeobox ½

List of Tables

Table No.	Title	Page No.
Table (1):	TNM classification system	17
Table (2):	RT Reaction mix components	
Table (3):	Thermal cycler settings	
Table (4):	The PCR Reaction Mix component	
Table (5):	The PCR cycling protocol	
Table (6):	Descriptive statistics for BC control and patient group regarding demogration	group raphic
Table (7):	Descriptive statistics between control and patient group regarding labo data using independent T test.	group ratory
Table (8):	Statistical comparison between Earl Late presentation patients' regarding symptoms, signs and cytology using Chi-square test	group urine
Table (9):	Descriptive statistics showing Earl Late patients' group regatistopathological findings	y and arding
Table (10):	Statistical comparison of mi RI expression of BC patient's group control group using Mann-Whitney to	and
Table (11):	Statistical comparison between He control group, Early and Late par group regarding expression of miRI using Kruskal-Wallis test	tients' NA-31
Table (12):	Statistical comparison between He control group, Early patients' regarding expression of miRNA-31 post hoc analysis	group using

List of Tables Cont...

Table No.	Title	Page No.
Table (13):	Statistical comparison between control group, and late patients regarding expression of miRNA-3 post hoc analysis	s' group 31 using
Table (14):	Statistical comparison between Eat Late patients' group regarding exp of miRNA-31 using post hoc analy	pression

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Two potential pathways of pathogene papillary non-muscle-invasive bl cancer (NMIBC) and solid muscle-invalider cancer (MIBC)	adder vasive	10
Figure (2):	Normal bladder appearance by cystosco	ру	14
Figure (3):	Shows Staging of bladder cancer according to the (TNM)	_	16
Figure (4):	MicroRNA biogenesis and mechanicaction		21
Figure (5):	Abnormal miRNA biogenesis in bl cancer development		28
Figure (6):	Integrative analysis of miRNA-31 genes and pathways	_	31
Figure (7):	The miRNeasy mini kit spin coextraction procedure		42
Figure (8):	Dtlite PCR system		47
Figure (9):	Bar chart showing the mean age of c and patient group		51
Figure (10):	Bar chart showing gender distribution among the study groups		51
Figure (11):	Bar chart showing distribution of ty bladder carcinoma in BC patients	_	55

Introduction

Bladder cancer (BCA) is the most common cancer of urinary tract with approximately 550,000 new cases diagnosed in 2018 worldwide (*Ferlay et al.*, 2018). In Egypt, BCA has the second-high prevalence. It accounts for 12.7% of male cancers with >7900 deaths per year, which is considerably higher than most other parts of the world. It is mostly related to smoking and Schistosoma infection (*Nagy et al.*, 2018).

Risk factors as chronic bladder inflammation, family history of bladder cancer and increased age are major causes (*Antoni et al.*, 2017).

Surveillance strategies for BCA recurrence have historically relied on the diagnostic combination of cystoscopy with histopathology and urinary cytology. However, cystoscopy approach is costly, invasive and uncomfortable. Urinary cytology is a preferable technique for the diagnosis of bladder tumors; however, it has low sensitivity. That's why new approaches are being tested (*Yun et al., 2013*).

Many studies have explored circulating cell free miRNAs and provided evidence that they exist in a stable form in various body fluids, such as: blood, urine, saliva and peritoneal fluid (*Weber et al.*, *2010*). MicroRNAs (miRNAs) are abundant non-coding RNA molecules of 19–24 nucleotides that perform a critical role in the regulation of gene expression

post transcriptional level. MiRNAs have at demonstrated to act as key regulators in the pathogenesis of diseases, particularly in cancer (Tan et al., 2018).

It is widely believed that the circulating miRNAs might not only come from circulating tumor cells, but also be released into the blood stream directly via blood cells or other tissue cells affected by disease. It is becoming clearer that the majority of circulating miRNAs are carried by various carriers, such as exosomes, Ago2, HDL, etc, as carrier-free miRNAs will be degraded by RNase digestion and other environmental factors (Mo et al., 2012).

Micro RNAs such as miRNA-31 show significantly elevated concentrations in bladder cancer patients compared to healthy. So it is emerging as a potential biomarker in BCA that can be promising in early diagnosis (Juracek et al., 2018).

AIM OF THE WORK

The aim of the present work is to evaluate the clinical utility of miRNA-31 in plasma as an early novel diagnostic marker for patients with bladder cancer, in comparison to cystoscopy with histopathology as a conventionally used technique for cancer detection.